tf-faster-rcnn在cpu下运行demo、测试和训练自己的数据集

本文详细介绍了如何在没有GPU的Ubuntu 16.04系统上,使用TensorFlow 1.7.0和Python 2.7.13环境,配置并运行tf-faster-rcnn项目。主要步骤包括环境配置、代码下载、配置修改、Cython模块链接、COCO API安装、运行demo、测试模型以及训练自定义数据集。在训练过程中,涉及到了数据集制作、替换数据、修改迭代次数等关键操作。
摘要由CSDN通过智能技术生成

1、环境配置

官方给出的Faster R-CNN的代码是caffe框架下的,我对caffe不是很了解,一直用的是tensorflow环境,所以去网上找了一下用tensorflow实现的Faster R-CNN。找到了一篇博客https://www.cnblogs.com/toone/p/8433581.html,作者使用的是一个github上Xinlei Chen的tensorflow版本的faster rcnn代码。这里贴出github链接https://github.com/endernewton/tf-faster-rcnn

首先,按照博客里面作者的步骤,一步步实现,但是我是在自己的台式机上跑的,没有GPU,因此需要做一些修改。下面走一遍整个流程,记录下踩过的坑

1.本机环境(安装的一切环境均在本机的tf虚拟环境下安装)

ubuntu16.04

无GPU

tensorflow版本是1.7.0

python版本2.7.13 (anaconda安装,虽然系统自带python,但是使用anaconda安装可以一次性将大部分机器学习中用到的包装好,所以建议使用anaconda安装)

cython版本0.25.2

opencv-python(该博客使用的是这个,但是我装的是opencv-contrib-python3.4.1.15,也没问题,看网上说,带contrib的会有很多好处,我对这个了解不多,所以先装再看)

easydict版本1.7(博客作者用的1.6,感觉有装就可以,版本关系不大)

 

2.下载github项目代码和数据

git clone https://github.com/endernewton/tf-faster-rcnn.git

我是直接在home目录下建了一个我自己的文件夹fast,然后在这个文件夹上右击,在此处打开终端,输入上面的命令就可以将整个项目代码下载到fast文件夹下。

 

目录介绍 

data-----------------这里是用来存放你的数据图片的

experiments------这个文件夹决定了你要采用什么样的方式去训练你的数据,大家都知道,faster-rcnn提供了两种训练方式:

                               1.交替训练(alt_opt)

                               2.近似联合训练(end-to-end)

                               这里我们就使用的是第二种,因为它速度更快,同时也能保证准确率,但是两者修改代码是不一样的。

lib--------------------存放python的接口文件,如需要数据读入等。

tools-----------------存放的是训练、测试等python文件,这里是我们的重点。

output是用来存放自己训练好的模型的,所以在未训练前,里面是空的。我建议大家要仔细阅读README.md文件,可以很好的帮助我们运行程序。

3.修改配置(因为使用的是cpu,有蛮多地方要修改的)

1)在lib文件夹下有个setup.py文件,里面可以设置CPU和GPU的参数。如图所示

首先按照github里面的readme,只要将USE_GPU_NMS 由原来的True改为False就可以。

2)修改lib/model/nms_wrapper.py

按照图中箭头所指示的地方,将代码注释,作用就是为了直接禁用掉GPU模式

3)lib/setup.py

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值