我的2011 憧憬2012

本文回顾了作者在2011年的宿舍生活与提高班学习经历,强调了个人在不同选择路径上的成长与收获。从宿舍的团队合作与支持,到提高班的技能提升与自我挑战,作者分享了在就业压力下做出考研、出国或参加提高班等选择时的心路历程,以及如何在学习中找到乐趣与成就感。同时,作者也对未来充满憧憬,期待在2012年实现更大的突破。

逝者如斯夫,不舍昼夜 。

2012已经向我们走来,我们面对2011的离开,稍有不舍;但是人总得往前走,微笑迎接2012,注定我们在2012收获的更多。

2011,写给宿舍的哥们。引用一句广告词“大家好才是真的好”。宿舍我的另外一个家。里边有热情的兄弟,有老大的照顾。在过去的一年里。我们经历了很多,但是也许大家各有不同的收获。在宿舍的哥们,有选择考研的,有选择出国的,有选择在提高班学习的。我知道每个人的选择都是对的,因为都是经过他们的深思熟虑的;考研的同学,必定要付出更多的时间去上自习,研究考研所学的课程。挺好,我也考研,只是不是现在。有时候回去宿舍,空空荡荡的,都去学习了,也许大家都意识到了就业的压力,所以也许大家觉得考研是很好的一条出路,起码是高学历。由于学习的需要。没有太多的时间在宿舍和大家一起开卧谈会,跟大家一起开卧谈会是人生中的一大开心事。“,知无不言,言而无尽”,怎一个爽字了得。由于大家走的不是一条路,考研的、出国的、提高班的;咱们这三个选择,我都希望大家能金榜题名。

2011,写给在提高班的我。我想我的真正收获是在提高班的这段时间里,是我个人的人生的一大转折,这是一个温暖的大家庭,在这里,只有你想不到的,没有你做不到的。我们跟着米老师这条指导路线,一路走来,还算比较顺畅,因为这些弯路米老师都帮我们走过了。

时间飞快,在机房的时间已占了我大学时间的一大部分,我算是比八期的学员进来的早点吧。首先在五楼的电脑这些硬件的学习,电脑的一般常见的问题能解决了,因为见得多了,处理的多了,所以他们常说“电脑很怕我,一见到我,这电脑就好了。”,呵呵,低调低调。电脑的常用软件的学习,最忌讳的就是,只看不动手,就好比游泳,看起来很easy;但是自己不去实践,不去操作,那么我们除了鼓掌,别的什么都不是咱们的,自己一无所获。然后到提高班的自己写程序。有了解老师和米老师的带领,这一路走来,问题不大。在一年多的时间里,已经和代码结下了非常深的友谊。而随着时间的推移,在不知不觉中,已经成为了学弟学妹的师哥,这就意味着,我们的一举一动都意味着提高班的形象,任重道远。

谈谈这段时间的英语学习,这是一个持久战,其实我觉得这个英语学习还是比较适合我的,一天一个小时;收获还是不小的;那天倩兰跟我说,现在听六级的听力,觉得里边的听力说的太慢了,毫无压力,其实我也这么觉得,对于以前一听到英语,就想忽略,这种错觉现在已不存在。其实秋和大勇说过,只要你四年坚持干一件事,那么你的收获必定是巨大的;我也一直相信,他们是过来人,反正我坚信,所以我“good good study,day day up”制定好每天的计划,相信2012我的收获是巨大的。

2011,刚刚跨入IT的我。

憧憬2012

提供了一个详细的MATLAB仿真程序,用于实现自回归(AR)模型的功率谱估计。该程序基于经典的数字信号处理教材——《数字信号处理理论、算法与实现》第三版中的相关内容(第545-547页),旨在帮助学习者理解和实践AR模型在功率谱估计中的应用。 简介 AR模型是一种常用的时间序列分析方法,通过建立当前值与其过去值之间的线性关系来描述时间序列的动态特性。功率谱估计是信号处理中的关键环节,用于揭示信号频率成分的分布。本仿真通过自相关方法实现AR模型参数的估计,并进而计算信号的功率谱。 特点 含详细注释:代码中添加了丰富的注释,便于初学者理解每一步的计算逻辑和目的。 参数可调:用户可根据需要调整AR模型的阶数(p值)、信号长度等参数,以适应不同的信号分析需求。 理论联系实际:通过将书本知识转化为实践操作,加深对AR模型及其在功率谱估计中应用的理解。 使用说明 环境要求:确保你的计算机上已安装MATLAB,并且版本适合运行提供的脚本。 加载脚本:将提供的MATLAB文件导入到MATLAB的工作环境中。 修改配置:根据需要修改代码中的参数配置,如AR模型的阶数等。 运行仿真:执行脚本,观察并分析输出结果,包括自回归模型的系数以及估算出的功率谱。 学习与分析:通过对比不同参数下的结果,深入理解AR模型在功率谱估计中的行为。 注意事项 在使用过程中,可能需要基础的数字信号处理知识以便更好地理解代码背后的数学原理。 请确保你的MATLAB环境已正确设置,能够支持脚本中的所有函数和运算。 结论 此资源对于研究信号处理、通信工程或是进行相关学术研究的学生和科研人员来说是一个宝贵的工具。它不仅提供了理论知识的具体实现,也是提升实践技能的优秀案例。通过动手操作,你将更加熟练地掌握AR模型及其在功率谱估计中的应用技巧。 开始探索,深入了解AR模型的力量,解开信号隐藏的秘密吧!
提供了关于时间序列分析与预测的宝贵资源,特别聚焦于**自回归积分滑动平均模型(ARIMA)**及其应用。对于那些希望深入理解并实践时间序列建模的学者、研究人员以及数据分析爱好者来说,这是一个不可或缺的学习材料。本资源不仅包括了详细的理论讲解,涵盖了时间序列分析的基础,如移动平均(MA)、自回归(AR)、指数平滑等关键概念,而且通过具体的ARIMA模型解析,搭配MATLAB编程实现实例,帮助用户从理论到实践全面掌握这一重要统计工具。 内容概览 理论讲解: 深入浅出地介绍了时间序列分析的基本原理,重点阐述ARIMA模型的构建步骤,包括如何识别模型的参数(p,d,q),以及其在处理非平稳数据中的作用。 MATLAB代码实现: 提供了多个ARIMA模型的MATLAB实现示例,这些代码覆盖了从数据准备、模型拟合、诊断检验到预测的全过程,是学习如何利用MATLAB进行时间序列分析的实用工具。 实例分析: 包括不同行业或领域的实际案例研究,展示如何应用ARIMA及其它时间序列方法解决真实世界的数据预测问题,增强理解和应用能力。 文件结构 时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar: 主要资源压缩包,解压后包含文档和MATLAB代码文件夹。 文档: 提供了理论知识讲解。 MATLAB代码: 实现了文中讨论的各种模型,附带注释,便于理解与修改。 使用指南 下载资源: 点击下载“时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar”文件。 解压文件: 解压缩至本地,确保你可以访问文档和代码。 环境准备: 确保你的电脑上已安装MATLAB,并熟悉基本操作。 学习流程: 首先阅读文档理解时间序列分析的理论基础,然后逐步跟随MATLAB代码示例进行实践。 实践应用: 尝试将所学应用到自己的数据集上,调整参数以优化模型性能。 注意事项 请根据M
评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值