hdu5833 异或版高斯消元

原创 2016年08月29日 15:31:14

300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案。

合法方案的每个数的质因数的个数的奇偶值异或起来为0。

比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3的个数是奇数为1),3的对应奇偶值为01,于是12*3是完全平方数。

然后异或方程组就是:

a11x1+a12x2+…+a1nxn=0

a21x1+a22x2+…+a2nxn=0

an1x1+an2x2+…+annxn=0

aij:第i个质数(2000内有303个质数)在第j个数里是奇数个则为1,否则为0。

xi:第i个数(最多300个数)被选则为1,否则为0。

求出有多少种解即可。(异或方程组高斯消元求秩,然后解就有2^(n-rank)种,减去全为0的解)


#include <cstdio>

#include <cstring>

#include <cmath>

#include <algorithm>

#define ll long long

#define mod 1000000007

using namespace std;

const int N=2000;

const int M=310;

int prime[N+1],cnt;

int n,t,mat[M][M],two[M]={1};

ll a[M];

void getPrime(){

    for(int i=2;i<=N;i++){

        if(!prime[i])prime[++cnt]=i;

        for(int j=1;j<=cnt&&prime[j]<=N/i;j++){

            prime[prime[j]*i]=1;

            if(i%prime[j]==0)break;

        }

    }

}

int Rank(int c[][M]){//异或版的高斯消元求秩

    int i=0,j=0,k,r,u;

    while(i<=cnt&&j<=n){

        r=i;

        while(c[r][j]==0&&r<=cnt)r++;

        if(c[r][j]){

            swap(c[i],c[r]);

            for(u=i+1;u<=cnt;u++)if(c[u][j])

                for(k=i;k<=n;k++)c[u][k]^=c[i][k];

            i++;

        }   

        j++;

    }

    return i;

}

int solve(){

    memset(mat,0,sizeof mat);

    for(int i=1;i<=n;i++)

        for(int j=1;j<=cnt;j++){

            ll tmp=a[i];

            while(tmp%prime[j]==0){

                tmp/=prime[j];

                mat[j][i]^=1;

            }

        }

    int b=n-Rank(mat);//b个自由元

    return two[b]-1;//减去全为0的解

}

int main() {

    getPrime();

    for(int i=1;i<M;i++)two[i]=two[i-1]*2%mod;

    scanf("%d",&t);

    for(int cas=1;cas<=t;cas++){

        scanf("%d",&n);

        for(int i=1;i<=n;i++)

            scanf("%lld",&a[i]);

        printf("Case #%d:\n%d\n",cas,solve());

    }

    return 0;

}
版权声明:本文为博主原创文章,未经博主允许不得转载。

《80X86汇编语言程序设计》课后习题答案(华中科技大学王元珍版本)

《80X86汇编语言程序设计》课后习题答案(个人版本) 说明 我个人在学习《80X86汇编语言程序设计》(王元珍等主编,华中科技大学出版社出版)的过程中,发现并未找到课后习题的标准答案,因此就...
  • lovefengruoqing
  • lovefengruoqing
  • 2018年01月07日 17:25
  • 202

如何linux版百度云

END 注意事项 如果是ubuntu系统更新的比较多,但是更新以后一定可以使用,请耐心等待。 上传速度飞快,但是下载不稳定,后期可能会变好...
  • Lina_ACM
  • Lina_ACM
  • 2016年10月02日 12:05
  • 611

hdu5833 Zhu and 772002 【高斯消元解异或方程组】

链接:http://acm.hdu.edu.cn/showproblem.php?pid=5833 题意:给你n个数,每个数的素数因子最大不超过2000,从n个数取出1~n个,问有多少种方案使得腾门...
  • u012483216
  • u012483216
  • 2016年08月15日 15:25
  • 224

hdu5833 Zhu and 772002 (高斯消元的简单应用)

hdu5833 Zhu and 772002 (高斯消元的简单应用):http://acm.hdu.edu.cn/showproblem.php?pid=5833 题面描述: Zhu and 77...
  • PNAN222
  • PNAN222
  • 2016年08月15日 12:00
  • 324

C++ 模板元中巧用异常让字符串储存在指定类型的tuple中

std::tuple_element>::type std::tuple_element>::type         数据储存在文本中那么都是字符串,所以当需要处理数据的时候需要将字符串转换成相应...
  • u012359379
  • u012359379
  • 2016年02月17日 15:47
  • 307

2016ccpc 1002(hdu5833)题解 (高斯消元求异或方程组自由变元)

比赛结束才知道是个高斯消元的题目,吓得我赶紧学了一发,然后惊讶的发现白皮书上原题QAQ. 由于刚学会,虽然是手敲但有些细节还是比对了模板,所以并不能解释,先放一发代码,等熟练了再补. 代码: #i...
  • johsnows
  • johsnows
  • 2016年08月15日 17:21
  • 581

享元模式(java版)

1.引入: 享元模式就是运用共享技术有效支持大量细粒度的对象(书面语)。通俗来讲就是将多个对象中共享的部分提取出来,如属性等,而共享部分的特点是作为共享的部分不会因为环境的改变而发生变化,这个叫做内...
  • ya_1249463314
  • ya_1249463314
  • 2016年08月25日 11:02
  • 211

SQL总结之数据库元数据(MSSQL)

数据库元数据就是指定义数据库各类对象结构的数据。 常见的数据库对象,包括:数据库表、触发器,索引,视图,存储过程,函数。 掌握数据库元数据,就需要深入地理解数据库的结构组成。 那么掌握数据库元数据...
  • gezhonglei2007
  • gezhonglei2007
  • 2016年09月17日 11:57
  • 2688

Lua中的元表和元方法

Lua的元表和元方法
  • u011418878
  • u011418878
  • 2016年04月01日 09:12
  • 1291

实现对象的复用——享元模式(五):单纯、复合享元模式,享元模式总结

14.5 单纯享元模式和复合享元模式标准的享元模式结构图中既包含可以共享的具体享元类,也包含不可以共享的非共享具体享元类。但是在实际使用过程中,我们有时候会用到两种特殊的享元模式:单纯享元模式和复合享...
  • will130
  • will130
  • 2016年02月16日 16:04
  • 527
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu5833 异或版高斯消元
举报原因:
原因补充:

(最多只允许输入30个字)