hdu5833 异或版高斯消元

原创 2016年08月29日 15:31:14

300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案。

合法方案的每个数的质因数的个数的奇偶值异或起来为0。

比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3的个数是奇数为1),3的对应奇偶值为01,于是12*3是完全平方数。

然后异或方程组就是:

a11x1+a12x2+…+a1nxn=0

a21x1+a22x2+…+a2nxn=0

an1x1+an2x2+…+annxn=0

aij:第i个质数(2000内有303个质数)在第j个数里是奇数个则为1,否则为0。

xi:第i个数(最多300个数)被选则为1,否则为0。

求出有多少种解即可。(异或方程组高斯消元求秩,然后解就有2^(n-rank)种,减去全为0的解)


#include <cstdio>

#include <cstring>

#include <cmath>

#include <algorithm>

#define ll long long

#define mod 1000000007

using namespace std;

const int N=2000;

const int M=310;

int prime[N+1],cnt;

int n,t,mat[M][M],two[M]={1};

ll a[M];

void getPrime(){

    for(int i=2;i<=N;i++){

        if(!prime[i])prime[++cnt]=i;

        for(int j=1;j<=cnt&&prime[j]<=N/i;j++){

            prime[prime[j]*i]=1;

            if(i%prime[j]==0)break;

        }

    }

}

int Rank(int c[][M]){//异或版的高斯消元求秩

    int i=0,j=0,k,r,u;

    while(i<=cnt&&j<=n){

        r=i;

        while(c[r][j]==0&&r<=cnt)r++;

        if(c[r][j]){

            swap(c[i],c[r]);

            for(u=i+1;u<=cnt;u++)if(c[u][j])

                for(k=i;k<=n;k++)c[u][k]^=c[i][k];

            i++;

        }   

        j++;

    }

    return i;

}

int solve(){

    memset(mat,0,sizeof mat);

    for(int i=1;i<=n;i++)

        for(int j=1;j<=cnt;j++){

            ll tmp=a[i];

            while(tmp%prime[j]==0){

                tmp/=prime[j];

                mat[j][i]^=1;

            }

        }

    int b=n-Rank(mat);//b个自由元

    return two[b]-1;//减去全为0的解

}

int main() {

    getPrime();

    for(int i=1;i<M;i++)two[i]=two[i-1]*2%mod;

    scanf("%d",&t);

    for(int cas=1;cas<=t;cas++){

        scanf("%d",&n);

        for(int i=1;i<=n;i++)

            scanf("%lld",&a[i]);

        printf("Case #%d:\n%d\n",cas,solve());

    }

    return 0;

}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

高斯消元法解01异或方程组(附poj 1222题解)

const int maxn=50; //有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1 int equ,var; int a[maxn][maxn]; //增广矩阵 int x...

用高斯消元法解异或方程组

异或方程组就是形如这个样子的方程组:M[0][0]x[0]^M[0][1]x[1]^…^M[0][N-1]x[N-1]=B[0]M[1][0]x[0]^M[1][1]x[1]^…^M[1][N-1]x...

POJ-3096-Surprising Strings-解题报告

暴力求解的,什么也不说了,上代码。 #include #include using namespace std; int main() { string str; while(...

HDU - 5833 Zhu and 772002(高斯消元解异或方程)

1表示的是这个数中这个素因子的次数为奇数,0表示为偶数。

Hdu 5833 Zhu and 772002(高斯消元解异或方程组)

题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=5833 思路: 将每个数质因数分解,若该位质因数指数为偶数,则该位a[i]为0,否则该位a[i]为1...

HDU-5833-Zhu and 772002【2016CCPC网络赛】【高斯消元】

1002-Zhu and 772002 题目大意:给出n个数字,问有多少种方式取(1~n)个数字使得成为一个完美平方数 题目思路: 求完全平方数,质因子的范围也知道,所以我们可以对每个质因子列出一个模...

hdu 5833 Zhu and 772002 2016中国大学生程序设计竞赛 - 网络选拔赛1002 [质因子分解+高斯消元]【数论】

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5833 ——————————-. Zhu and 772002Time Limit: 2000/10...

2016ccpc 1002(hdu5833)题解 (高斯消元求异或方程组自由变元)

比赛结束才知道是个高斯消元的题目,吓得我赶紧学了一发,然后惊讶的发现白皮书上原题QAQ. 由于刚学会,虽然是手敲但有些细节还是比对了模板,所以并不能解释,先放一发代码,等熟练了再补. 代码: #i...

【HDU5544 2015CCPC 南阳国赛E】【树上dfs找本质不同环 高斯消元 时间戳优化】Ba Gua Zhen 连通图上最大异或环

Ba Gua Zhen Time Limit: 6000/4000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Tota...

HDU 3364 - Lanterns (高斯消元 + 异或方程组)

RTR
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)