关闭

hdu5833 异或版高斯消元

标签: hdu
153人阅读 评论(0) 收藏 举报
分类:

300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案。

合法方案的每个数的质因数的个数的奇偶值异或起来为0。

比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3的个数是奇数为1),3的对应奇偶值为01,于是12*3是完全平方数。

然后异或方程组就是:

a11x1+a12x2+…+a1nxn=0

a21x1+a22x2+…+a2nxn=0

an1x1+an2x2+…+annxn=0

aij:第i个质数(2000内有303个质数)在第j个数里是奇数个则为1,否则为0。

xi:第i个数(最多300个数)被选则为1,否则为0。

求出有多少种解即可。(异或方程组高斯消元求秩,然后解就有2^(n-rank)种,减去全为0的解)


#include <cstdio>

#include <cstring>

#include <cmath>

#include <algorithm>

#define ll long long

#define mod 1000000007

using namespace std;

const int N=2000;

const int M=310;

int prime[N+1],cnt;

int n,t,mat[M][M],two[M]={1};

ll a[M];

void getPrime(){

    for(int i=2;i<=N;i++){

        if(!prime[i])prime[++cnt]=i;

        for(int j=1;j<=cnt&&prime[j]<=N/i;j++){

            prime[prime[j]*i]=1;

            if(i%prime[j]==0)break;

        }

    }

}

int Rank(int c[][M]){//异或版的高斯消元求秩

    int i=0,j=0,k,r,u;

    while(i<=cnt&&j<=n){

        r=i;

        while(c[r][j]==0&&r<=cnt)r++;

        if(c[r][j]){

            swap(c[i],c[r]);

            for(u=i+1;u<=cnt;u++)if(c[u][j])

                for(k=i;k<=n;k++)c[u][k]^=c[i][k];

            i++;

        }   

        j++;

    }

    return i;

}

int solve(){

    memset(mat,0,sizeof mat);

    for(int i=1;i<=n;i++)

        for(int j=1;j<=cnt;j++){

            ll tmp=a[i];

            while(tmp%prime[j]==0){

                tmp/=prime[j];

                mat[j][i]^=1;

            }

        }

    int b=n-Rank(mat);//b个自由元

    return two[b]-1;//减去全为0的解

}

int main() {

    getPrime();

    for(int i=1;i<M;i++)two[i]=two[i-1]*2%mod;

    scanf("%d",&t);

    for(int cas=1;cas<=t;cas++){

        scanf("%d",&n);

        for(int i=1;i<=n;i++)

            scanf("%lld",&a[i]);

        printf("Case #%d:\n%d\n",cas,solve());

    }

    return 0;

}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:45006次
    • 积分:2500
    • 等级:
    • 排名:第14777名
    • 原创:208篇
    • 转载:5篇
    • 译文:0篇
    • 评论:30条
    最新评论