[置顶] 假冒“国产”Linux为什么要狠批?

    2011年,6月16日,科技部在上海召开一次“重大专项新型举国体制研讨会”(科技部官方门户网站有报道),深刻阐明了什么叫重大专项的新型“举国体制”,以及新型“举国体制”与传统“举国体制”的...
阅读(14109) 评论(27)

[置顶] 再论云计算进中国,我们该怎么办?

    去年12月30日,我写了一篇短文,题为“2011年云计算进中国,我们该怎么办?“(简称“云计算进中国”),在当时,此文并没有引起国内业界的...
阅读(4450) 评论(9)

[置顶] 我和Java的一些往事

     大家知道,在1991年,几乎与Linux同时,SUN发布了Java编程语言。不久,我的大学同学(比我低两年)王克宏教授(清华博士导师)与SUN合作成立了中国最早的“Java研究中心”...
阅读(32429) 评论(214)

无穷小放飞互联网是我国之首创

无穷小放飞互联网是我国之首创回顾历史,自上世纪70年代无穷小微积分兴起之后,有一个近30年的安静期、思考期、,或者说, 潜伏期。进入本世纪,特别是自2011年起,无穷小微积分的教学实践研究又趋活跃。对此有论文可证。2012年12月,十八大召开之后,袁萌连续发表博文,重新发起倡导、推动无穷小微积分下放中学的计划。上世纪70年代,世界著名数学家Kurt Godel曾说:“There are goodr...
阅读(32) 评论(0)

无穷小微积分的模型论思想

无穷小微积分的模型论思想进入现代历史时期,无穷小微积分是在超实数*R上展开的,传统实数体系R上的微积分将逐渐退居幕后。这是为什么呢?在传统实数R上的微积分学表现为一组陈述句(Statements)的集合。一般而言,将两个含有函数符号的表达式用等式或不等式连结起来就构成了一个陈述句。我们的目标是把R上的陈述句转移(Tranfer)到超实数*R上,使其保留原来的意义(真或假,以及没有含义),然后,在*...
阅读(62) 评论(0)

快讯:无穷小微积分官方网站,从天而降,惊喜万分!

快讯:无穷小微积分官方网站,从天而降,惊喜万分!    今天偶尔搜索关键词“无穷小微积分”,一件想不到事情发生了。无穷小微积分官方网站开通了!哈哈!!                          无穷小放飞互联网行动必须有一个官方网站,名正言顺!从今天开始,我准备从公理化入手,逐步展开无穷小微积分,留给后来人。请读者相互转告。多谢!!袁萌  9月23容...
阅读(51) 评论(0)

从鼓吹Linux转向科普无穷小微积分的道路

从鼓吹Linux转向科普无穷小微积分的道路    2006年4月27日,袁萌在CSDN网站上最早发表的一篇博文,题目是“企业是Linux应用的基地”,时至今日,总计发表博文4,423篇,大约500万字。    事实上,其中最有价值、长久保留的博文是无穷小微积分系列科普的短文。袁萌  9月23日...
阅读(53) 评论(0)

无穷小微积分下放中学的根据

无穷小微积分下放中学的根据    借助超实数取“标准部分”运算st(这是一个低级代数运算),我们很容易定义函数的导数。导数是微积分学的基本概念。搜索维基与百度百科,查阅所谓的“十一五”国家级规划教材,我们不难发现,它们都是“大同小异”,给出导数的如下定义:导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个...
阅读(47) 评论(0)

再论单子的性质

再论单子的性质 在上世纪中叶,以哥德尔为首的数理逻辑先锋派,高举数学公理化的旗帜,为无穷小恢复了名誉。1976年,J. Keisler在A.Robinson的非标准分析基础上,做了进一步的具体细化与完善,出版了《基础微积分》(无穷小方法)教材。很明显的事实是,引进无穷小就必须扩大原有的实数系R,使其成为”超实数“有序域*R。这就带来了一些新的问题。在*R中,如果两个超实数x,y相差一个无穷小,就说...
阅读(52) 评论(0)

单子(Monad)有多少?

单子(Monad)有多少?在超实线上有许多成团状、紧密聚合在一起的结构叫做“单子”,单子中所有的超实数相互之间相差一个无穷小。很显然的是,任何单子里面只能有一个普通的实数。所以,单子与实数一样多。但是,单子里面是否存在有一个普通的实数?这是一个关键性的问题。一般而言,在数学中,存在性的证明都是比较困难的。在工科院校的微积分教学大纲中并不讲授实数的完备性。比如,单调、递增、有界的实数序列必定有极限。...
阅读(73) 评论(0)

非标准分析的基础知识

非标准分析的基础知识                  今年9月19日,无穷小放飞互联网行动开始启动,“火星人家园”网站正式开通。这一放飞行动的理论依据是什么?是不是蛮干?非也。非标准分析(NSA)是美国数理逻辑学家A.鲁宾逊于1960年创立。鲁宾逊证明,实数结构R可扩张为包含无穷小数和无穷大数的结构*R,在一定意义下*R与R有相同的性质。称*R中的数为超实数(Hyperreals),形象地说,是...
阅读(56) 评论(0)

现代数学大厦究竟有多高?

现代数学大厦究竟有多高?对于现代数学大厦而言,无穷小放飞互联网计划,目前只涉及现代数学大厦的基础部分,是“一点点儿”,算不上是什么“宏伟”计划,不值得骄傲。为什么?实际情况是,具有权威性的布尔巴基《数学基础》全集(上世纪40年代组织编写,50年代相继出版),该全集内容如下:第一卷  集合论第二卷  代数学第三卷  一般拓扑学第四卷  实变函数第五卷  拓扑向量空间第六卷  积分论第七卷  交换代数...
阅读(66) 评论(0)

函数的序偶定义

函数的序偶定义当今,在大一的微积分教科书里,面,函数的定义,稀里糊涂,误人子弟。2013年6月29日,老翁发表博文,题为“无穷小与函数的序偶定义”,现在重新发表,请读者参考。袁萌   9月21日附:无穷小与函数的序偶定义全文如下:进入中文互联网搜索“无穷小与函数”关键字,你会发现,这两个基本数学概念被媒体糟蹋得不成样子,严重干扰了大学新生上网学习的兴趣。这种状况必须得到改变。看问题要有历史观点,不...
阅读(179) 评论(0)

无穷小放飞互联网,告慰恩师在天之灵

无穷小放飞互联网,告慰恩师在天之灵如今“火星人家园”网站已经开通,无穷小经过这个“喷口”放飞互联网已经成为现实。五十多年前,罗宾逊(A.Robinson)发表基于Skolen非标准算术的无穷小微积分,开创了现代微积分学公理化之先河。然而,很可惜的是,经过一百多年的大学教育,培养出成千上万的痴迷于极限轮的守旧派,全然漠视超实数微积分的存在。我的恩师、无穷小微积分的教学实践者莫揆绍先生(已故、南京大学...
阅读(207) 评论(0)

我心目中数学家黎曼

我心目中数学家黎曼从中学时代起,我喜欢思考几何学基础问题,由此联想到物理空间的本质。数学与物理学有什么关系呢?这个问题令我特别神往。我特别喜欢钻数学“牛角尖”,对无穷小空间范围内的几何学特别神往。由于喜欢思考无穷小几何学问题,使我爱上了数学家黎曼。对于我而言,黎曼是世界上最具想象力的数学家。现将数学家黎曼的生平、思想与贡献附在下面,供读者思考。袁萌   9月20日附:一、黎曼的人生经历1826年,...
阅读(163) 评论(0)

金婚纪念日谈黎曼函数R(x)

金婚纪念日谈黎曼函数R(x)今天是我的金婚纪念日。结婚当年,我正好是27岁。德国数学家黎曼,大约在27岁时,提出了一种函数R(x),定义在半开区间(0,1]上,对其中的无理数取值零,而对有理数p/q取值1/q(整数p与q互质)。这种古怪的函数,在有理数处间断,在无理数处连续。黎曼函数的图像很古怪,不是一条弧线。但是,黎曼函数可积分。实际上,黎曼函数有很多用处。深入讨论,涉及到许多实变函数论的概念,...
阅读(216) 评论(0)

快讯:金婚大礼包:火星人家园网站今日开通!

快讯:金婚大礼包:火星人家园网站今日开通!盼望已久的无穷小微积分专业网站今日开通,域名是“火星人家园”,也就是说,通过百度搜索域名“火星人家园”即可进入火星人家园官网,其中包含一千余篇无穷小微积分的短文,系统地讲解、介绍无穷小微积分的相关内容,让读者耳目一新!该网站目前正在增加内部搜索功能,方便读者查找相关文章。网站服务器有一备份,文章不会被他人非法删除。欢迎读者访问火星人家园。火星人发展、使用的...
阅读(139) 评论(2)

金婚之旅,沉思微积分演变历史

金婚之旅,沉思微积分演变历史利顺德是位于天津市的一座西式大酒店,1963年建成,在1996年被国务院批准为全国重点文物保护单位。                   今年9月19日是我与家人的金婚纪念日。为此,孩子们忙了起来。9月16日一清早,我与家人被拉进汽车,前往天津利顺德大街店,拍摄纪念照。一路上,我闭起眼睛养神,实际上,是在思考微积分的演变历史。1957年,我进入南京大学数学天文系学习数学...
阅读(161) 评论(0)

再谈微积分下放中学的现实意义

再谈微积分下放中学的现实意义当今,“一带一路”开阔了人们的眼界,各国之间的人文交流日益扩大。现在,微积分下放中学的这一“老问题”又一次摆在议事日程上。在网络上搜索可以发现:袁萌主张微积分下放中学已有三十多年,是国内主张微积分下放中学的第一人,有文章可证。袁萌   9月15日附:微积分“文盲”,社会处境悲惨2015年6月30日,老翁发表短文,题为“微积分下放高中的现实意义”,一字不改,现重新发表,全...
阅读(145) 评论(0)

为什么不叫非标准微积分?

为什么不叫非标准微积分?人们也许会问:既然有标准的微积分,那么,为何还要搞什么非标准的微积分?不符合标准难道要比标准还要好吗?这是一种误解.早在19世纪90年代,意大利数学家Peano对算术(Arithmetic)进行公理化,获得成功。人们把自然数集合{0,1,2,3,…}称为Peano标准模型,记为PA。也就说,模型PA满足Peano公理体系。上世纪1934年,挪威数学家Skolem证明了存在另...
阅读(150) 评论(0)

什么是微积分?

什么是微积分?2013年8月15日,老翁发表重要短文(微积分),被CSDN非法删除,现将原文重新发表。说明:当今,我国每年都有上千万的青年学子学习微积分基础知识,然后走上社会,成为劳动大军的一员。微积分的重要性,毋庸置疑。袁萌  9月13日附:微积分坦率地讲,我很少参阅中文维基百科的资料,经常参考英文维基网站Wikipedia的相关内容。昨日,查阅“微积分”(Calculus)条目发现,中英文维基...
阅读(168) 评论(0)

无穷小放飞互联网,赶超美日不是梦

无穷小放飞互联网,赶超美日不是梦    当今时代不同了,大屏手机可谓人手一部。公理化的无穷小微积分极大地简化了微积分教学过程,制作手机版不是一件难事。        遥想当年,在上世纪70年代。袁萌游走于国内各大知名高校,宣讲无穷小微积分,效果近乎于零。仔细研读日本岩波数学会的微积分,相当于美国托马斯微积分(美国最流行的微积分教科书),落后保守,误人子弟。公理化的无穷小微积分专业网站上线之后,推出...
阅读(185) 评论(0)

无穷小pk极限论,你站在哪一边?

无穷小pk极限论,你站在哪一边?2013年6月19日,老翁发表短文,题为“无穷小微积分复辟(Comeback)四十年”,现在重新发表,一字不改。袁萌   9月12日 附:无穷小微积分复辟(Comeback)四十年 在此文标题中,我们使用“复辟”这个字眼,而不用“复活”一词的用意是很明显的,意思是,无穷小微积分又恢复了当年的荣耀,夺回了自己的“皇冠”。遥想当年,莱布尼兹发明了”无穷小“,将其用于函数...
阅读(168) 评论(0)
4550条 共228页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:7734893次
    • 积分:146068
    • 等级:
    • 排名:第4名
    • 原创:4480篇
    • 转载:39篇
    • 译文:10篇
    • 评论:24192条
    文章分类
    文章存档
    最新评论
    voweber中文web技术开发站