袁萌专栏

无穷小微积分倡导者--北大教授

排序:
默认
按更新时间
按访问量

阿基米德的无穷小方法

    ​    ​两千多年之前,数学家阿基米德懂得用无穷小宽度的金属板来计量面积和体积。这是很了不起的数学成就。     ​    ​两千多年之后,鲁宾逊严格定义了什么是数学的无穷小。随之,无穷小微积分出现了。     ​    ​两千年,弹指一挥间。现今,我们已经进入无穷小数学时代,然而,...

2018-10-16 17:58:21

阅读数:18

评论数:0

在世界数学发展的转折关头,是犹豫观望,止步不前;还是奋发图强,弯道超车?

        根据美国数学史专家Tropp的最新研究表明,当今,世界数学发展正处在一个转折关口。我们该怎么办?是犹豫观望,止步不前;还是奋发图强,弯道超车?                  反观我们国内,本文所提问题完全具有针对性。大家心知肚明。         坦率地说,“无穷小微积分”...

2018-10-15 10:30:18

阅读数:25

评论数:0

好消息:无穷小与微积分牵手国内移动互联网

    ​    ​今天是“无穷小微积分”网站诞生一周年纪念日。同时,我们荣幸地告诉大家一个好消息:从今日起,无论什么人使用百度搜索关键词“无穷小”或“微积分”,均可搜索到“无穷小微积分”的内容,两者牵手互联网已经获得成功。         袁萌  陈启清  10月14日 附:微积分(原文) ...

2018-10-14 14:25:08

阅读数:70

评论数:0

呼吁政府主管部门顺应世界数学发展潮流推进微积分教育改革

    ​    ​2016年元旦,美国R Vinsonhaler教授发表最新研究论文,题为“Teaching Calculus with Infinitesimals”,详细阐述了非数学专业低年级大学生学习无穷小微积分的有益性与必要性。     ​    ​实际情况是,国内此类研究是一项空白。...

2018-10-13 04:55:06

阅读数:62

评论数:0

Teaching Calculus with Infinitesimals

Teaching Calculus with Infinitesimals By R Vinsonhaler(‎2016.01.01)   This article argues that first semester calculus courses for non-mathematics maj...

2018-10-13 01:31:50

阅读数:19

评论数:0

Non-standard calculus

Non-standard calculus In mathematics, non-standard calculus is the modern application of infinitesimals, in the sense of non-standard analysis, to di...

2018-10-12 18:53:19

阅读数:29

评论数:0

标准数学与非标准数学

    ​    ​根据数学史专家Joseph W.Dauben的最新研究,现代数学分为标准与非标准两大类。     ​    ​比如,一般认为,In mathematics, non-standard calculus is the modern application of infinite...

2018-10-12 16:13:52

阅读数:30

评论数:0

纪念无穷小微积分网站诞生一周年

    ​    ​2017年10月14日,自带搜索功能的无穷小微积分网站正式开通。          ​ 回顾以往,19550年鲁宾逊创立非标准分析(NSA,也叫无穷小分析);19976年,J.Keisler发表“初等为微积分”(无穷小方法),在全世界范围内掀起研究运用无穷小分析的热潮。   ...

2018-10-11 13:52:25

阅读数:38

评论数:0

什么是超实数?

    ​    ​凡想透”解超实数的读者,最有效的办法是:搜索关键词“无穷小微积分”,进入“无穷小微积分”专业网站,下载“Elementary Calculus”教材,查看第一章目录,仔细思考各个章节的名称,而暂时不必细看具体内容。     ​    ​为方便读者,该初等微积分教材的第一章内容...

2018-10-10 05:25:06

阅读数:54

评论数:0

科普中国谈超实数,胡编乱造,越普越乱

    ​    ​今日,阅读科普中国谈超实数,发现科普超实数的内容,胡编乱造越普越乱。     ​    ​鲁宾逊的超实数系统是传统的标准实数系统的另一种非标准模型,两者之间由转移原理连接。科普中国谈超实数的作者根本不懂转移原理,文不对题,胡编乱。越普越乱。     ​    ​实际情况是,几何...

2018-10-10 00:18:03

阅读数:38

评论数:0

JosephW.Dauben数学史研究说明了什么?

    ​    ​在上世纪60年代,鲁宾逊创立非标准分析(NSA)的初衷到底是什么?现今,鲁宾逊已经离开我们45年了。对我们而言,这个问题十分重要,必须正面回答,不能含糊其辞。但是,谁能来回答这个问题呢?     ​    ​实际情况是,数学史专家Dauben教授几乎花费了毕生的精力,收集近百...

2018-10-09 04:03:49

阅读数:47

评论数:0

科普中国谈柯西,胡说八道,误人子弟

    ​    ​今日阅读科普中国谈柯西,顿时火冒三仗。为什么?     ​    ​上世纪60年代,英国数学史专家Imre Lakatos(1922-1974)研究柯西28卷数学专著发现,原来柯西是莱布尼兹无穷小微积分的思想传人,与威尔斯特拉斯不是一路人。     ​    ​科普中国文章作者...

2018-10-08 15:35:57

阅读数:62

评论数:0

鲁宾逊非标准无穷小之国际研究盛况

    ​    ​我们发现,美国著名数学史专家Joseph W. Dauben教授在其专著“Abraham Robinson and Nonstandard Analysis: History, Philosophy, and Foundations of Mathematics”(1999年发...

2018-10-07 23:56:37

阅读数:41

评论数:0

鲁宾逊诞辰日思考有感

    ​    ​今天是鲁宾逊的生日,思考有感。     ​    ​当今,人们普遍接受的无穷小定义是:     ​    ​“An infinitesimal is a number whose magnitude exceeds zero yet remains smaller than ...

2018-10-06 04:15:47

阅读数:49

评论数:0

无穷小与人类相伴已有2500年

    ​    ​根据史料记载,公元前500多年,毕德哥拉斯学派发明了“单子”的概念。单子很小,没有几何长度,但是又不退缩为一个“几何点”。这就是最古老的无穷小概念,至今无穷小与人类相伴已有2500年。     ​    ​上世纪60年代,鲁宾逊发明了超实数系统,其中也有“单子”。实质上,这两种...

2018-10-04 04:18:02

阅读数:58

评论数:0

无穷小最古老的祖先

        众所周知,鲁宾逊的最大历史功绩是为无穷小奠定了严格的数学理论基础。         但是,无穷小最古老的祖先是什么?一般人不甚了解。         根据Joel A.Tropp的最新研究“无穷小:历史与应用”,我们发现无穷小最古老的祖先是毕德哥拉斯学派提出的“单子”(Mona...

2018-10-03 15:32:23

阅读数:73

评论数:0

隆重纪念鲁宾逊诞辰,不走样,不离谱

    ​    ​在数学界,鲁宾逊是无穷小的代名词。菲氏微积分徒子徒孙不喜欢无穷小,当然不会纪念鲁宾逊的诞辰,所以我们要特别隆重地纪念数学家鲁宾逊的100周年诞辰。     ​    ​当前,无穷小在中国高校数学教育界掀起一阵“风浪”,菲氏徒子徒孙心中发慌,害怕丢掉饭碗。     ​    ​美...

2018-09-30 11:12:06

阅读数:89

评论数:0

我们隆重纪念鲁宾逊诞辰100周年

        现今,纪念非标准分析(NSA)奠基人鲁宾逊(Abraham Robinson,1918.10.06 - 1974.08.11,享年56岁)诞辰100周年.具有重大现实意义。         非标准分析(NSA)创立于1960年,是20世纪数学研究的重大进展之一。时至今日,非标准分...

2018-09-29 05:29:10

阅读数:60

评论数:0

Henson构建超实数直接法(全文),何处寻?

    ​    ​一般而言,高校教授超实数微积分,中国与美国情况都一一样,师生惧怕形式逻辑与公理集合论。怎么办?       ​    ​美国知名数学家C.W.Henson教授发明了于一种构建超实数的直接法,可以避开上述实际问题。       ​    ​但是,该直接法的全文电子版很难寻找。...

2018-09-28 13:03:11

阅读数:67

评论数:0

中国高校师生最喜爱的超实数构建法

    ​    ​当今,全国高校都面临一个实际问题: 必修基础课微积分如何进行教学改革。       ​    ​坦率地说,由于历史的种种原因,中国高校师生一般都不熟悉形式逻辑与公理集合论,对于学习超实数有恐惧感。怎么办?       ​    ​针对这种情况,今年9月26日,我们引进美国知...

2018-09-28 06:56:09

阅读数:72

评论数:0

提示
确定要删除当前文章?
取消 删除