袁萌专栏

无穷小微积分倡导者--北大教授

谈逻辑与数学界线之淡化(修正版

谈逻辑与数学界线之淡化(修正版)     在近代数学研究中,逻辑与数学界线之淡化。这种现象值得关注。     在“模型论入门”博文中,我们指出,进入二十一世纪,世界数学形式化、公理化高潮兴起。“知识共享”无穷小微积分就是在这种发展浪潮中崛起的。     反观我们国内,数学教育界的学术认识水平似乎仍...

2018-12-16 23:01:50

阅读数:723

评论数:1

谈逻辑与数学界线之淡化

谈逻辑与数学界线之淡化     在近代数学研究中,逻辑与数学界线之淡化。这种现象,值得关注。     在“模型论入门”博文中,我们指出,进入二十一世纪,世界数学形式化、公理化高潮兴起。“知识共享”无穷小微积分就是在这种发展浪潮中崛起的。     反观我们国内,数学教育界的学术认识水平似乎仍然停留在...

2018-12-16 15:24:11

阅读数:44

评论数:0

模型论入门

模型论入门     无穷小微积分是模型论的小分支。当今,国际上,模型论发展很快,我们必须补课。     站在模型论的角度,极限微积分的未来就是无穷小微积分。这是事物发展的逻辑。     我们苦苦求索,终于找到一篇关于模型论的入门教材。请读者参阅本文附件。 袁萌  陈启清   12月16日 附: I...

2018-12-16 00:18:31

阅读数:708

评论数:0

学习模型论,何其难?(修改稿)

    四十年过去了,在国内学习纯粹数学(例如:模型论)缺乏原始资料,仍然困难重重,因此,无人问津。 什么是数学模型理论?国内学界不发声,不说话,稀里糊涂,令人很无奈。 为此,我们推荐一篇高级科普文章(共计8章),请见本文附件,特别是,仔细阅读该文的引言部分。 说明:当今,在国外,模型论正在...

2018-12-14 23:06:01

阅读数:996

评论数:0

学习模型论,何其难?

四十年过去了,在国内学习纯粹数学(例如:模型论)仍然困难重重,甚至无人问津。 什么是数学模型理论?国内学界不发声,不说话,令人很无奈。 为此,我们推荐一篇科普文章,请见本本文附件。 袁萌  陈启清  12月14日 附件:Fundamentals of Model Theory Willi...

2018-12-14 05:26:47

阅读数:550

评论数:0

给新一届数学类“教指委”的一封公开信(修改稿)

西安交通大学数学与统计学院 尊敬的李继成秘书长:    祝贺您担任新一届数学课程类“教指委” 秘书长。 目前,国内现行普通高校数学教学大纲不包括超实无穷小(Hyperreals)概念,对此,我们提出质疑与批评。 此事,烦请转告“教指委”主任徐宗本教授。 顺致敬意! (注:此函已于昨日挂号寄出) 袁...

2018-12-12 23:11:51

阅读数:883

评论数:0

给新一届数学类“教指委”的一封公开信

西安交通大学数学与统计的公开信学院 尊敬的李继成秘书长:    祝贺您担任新一届数学课程类“教指委” 秘书长。 现行普通高校数学教学大纲不包括超实无穷小概念,为此,我们提出质疑。 此事,烦请转告“教指委”主任徐宗本教授。 顺致敬意! 袁萌   陈启清   12月12日 Yuanmen...

2018-12-12 05:10:27

阅读数:712

评论数:0

算术的非标准模型(修改稿)

算术的非标准模型包括无穷大自然数,是非标准分析的先驱。 鲁宾逊无穷小微积分(超实数)就是传统微积分的非标准模型。 深入学习、理解算术的非标准模型对于正确理解无穷小微积分是十分有益的。 建议读者仔细研读本文附件。, 袁萌  陈启清   12月10日 附件:算术的非标准模型 Non-Sta...

2018-12-10 23:22:27

阅读数:1028

评论数:0

算术的非标准模型

鲁宾逊基于超实数的无穷小微积分就是传统微积分的非标准微积分。 深入学习、理解算术的非标准模型对于正确理解无穷小微积分是十分有益的。 建议读者仔细研读本文附件。, 袁萌  陈启清   12月10日 附件:算术的非标准模型 Non-Standard Models of Arithmetic ...

2018-12-10 19:37:55

阅读数:364

评论数:0

数学想象力与数学创造力:非标准自然数的发现

遥望天空,看着星星闪烁。谁知天上星星有多少? 上世纪30年代,数学家在书房里发挥数学想象力与数学创造力,严格地证明了非标准自然数的存在性。由此,天上的星星有多少?就有了新的说法。 说明:有了非标准算术,非标准分析离我们就不远了。 请见本文附件,可知一斑。 袁萌   陈启清   12月8日 ...

2018-12-08 23:26:37

阅读数:1049

评论数:2

模型论与现代微积分(修改稿)

从模型论的视野里,我们如何看待现代微积分? 2018年12月6日,我们在“(ε,δ)条件与无穷小方法之比研究”博文小中正式阐明了相关学术立场。 2008年,Keisler教授,作为塔尔斯基模型论的传人,发表研究论文,题为“Quantifiers in Limits”(极限中的量词)站在模型论的视...

2018-12-08 00:07:11

阅读数:1384

评论数:1

模型论与现代微积分

2018年12月6日,我们在“(ε,δ)条件与无穷小方法之比研究”博文小中正式阐明了相关学术立场。 2008年,Keisler教授,作为塔尔斯基模型论的传人,发表研究论文,题为“Quanti?ers in Limits”(极限中的量词)站在模型论的视角 深入阐述了现代微积分的弊端。 我们的观点...

2018-12-07 13:31:11

阅读数:327

评论数:0

条件与无穷小方法之比研究

一、(ε,δ)条件: ∀ε∃δ∀Δx{… ⇒ … } Δx不是无穷小;   二、无穷小方法: ∀Δx{… ⇒ … } Δx是无穷小。 十分明显的是:前者使用了三个量词,而后者只需要一个量词。理解与使用前者,较之后者,费解与困难得多。 1960年,鲁宾逊严格证明了两者的等价性(互为充...

2018-12-07 05:08:00

阅读数:593

评论数:1

(ε,δ)条件与无穷小方法之比研究

一、(ε,δ)条件: ∀ε∃δ∀Δx{… ⇒ … } Δx不是无穷小; 二、无穷小方法: ∀Δx{… ⇒ … } Δx是无穷小。 十分明显的是:前者使用了三个量词,而后者只需要一个量词。理解与使用前者,较之后者,费解与困难得多。 1960年,鲁宾逊严格证明了两者的等价性(互为充要条件...

2018-12-06 23:01:22

阅读数:523

评论数:0

数学创新,领跑世界,谁能敌?

环顾今日之全球,科技创新专利连续八年领先世界(排名第一)。数学创新如何? 上世纪六十年代,世界数学先锋派哥德尔指出:未来世界是非标准数学。七十年代,国内学界奋起紧跟,至今已有四十余载。 进入本世纪,特别是在党的十九大之后,非标准数学投放全国高校,全面提升现代数学教育能力,培养新型数学人才,高举...

2018-12-05 23:00:34

阅读数:1037

评论数:1

数学创新,领跑世界,谁能敌?

环顾今日之全球,科技创新专利八年领先世界。数学创新如何? 上世纪六十年代,世界数学先锋派哥德尔指出:未来世界是非标准数学。七十年代,国内学奋起紧跟,至今已有五十余载。 进入本世纪,特别是在十九大之后,非标准数学投放全国高校,全面提升数学教育能力,培养人才,大搞数学创新,领跑世界,谁能敌? 袁萌...

2018-12-05 12:01:26

阅读数:525

评论数:1

无穷微积分牵手“知识共享”,如虎添翼,所向无敌

无穷微积分牵手“知识共享”,如虎添翼,所向无敌     昨日,孩子带我回家(宿舍),回到中国人民大学校园,在人大第三教学楼前停留了一会儿。三十多年前,这里是无穷小微积分教学实践的地方。     严格地讲,无穷小微积分发展有三个时间“节点”:1960年,1976年以及2001年,分别代表;鲁宾逊理论...

2018-12-04 23:18:04

阅读数:1697

评论数:0

快讯

快讯:世界知识产权组织12月3日发布了《世界知识产权指标》年度报告。报告显示,2017年全球共提交了317万件专利申请,连续第八年实现增长,涨幅为5.8%。数据显示,2017年,全球商标申请总量为1239万件,而工业品外观设计的申请总量为124万件。中国以上各类知识产权的申请量都位列世界第一。(科...

2018-12-04 12:43:06

阅读数:501

评论数:0

无穷微积分牵手“知识共享”,如虎添翼,所向无敌

昨日,孩子带我回家(宿舍),回到中国人民大学校园,在人大第三教学楼前停留了一会儿。三十多年前,这里是无穷小微积分教学实践的地方。 严格地讲,无穷小微积分发展有三个时间“节点”:1960年,1976年以及2001年,分别代表;理论的创立,教学实践的开始以及“知识共享”的开端。 时间发展顺序是不可...

2018-12-04 10:45:30

阅读数:523

评论数:1

科普“知识共享”严重缺失,国内亟待补课

在我们国内,“知识共享”,概念混乱,甚至胡说八道,严重阻碍了科技创新与发展。 向全国高校五次轮番投放“知识共享”数字化微积分教科书的目的之一就是借此深入科普“知识共享”。 请参阅本文附件,即可知一斑。 袁萌  陈启清  12月3日 附件:知识共享组织发布《2016年共享领域情况报告》 ...

2018-12-04 01:21:47

阅读数:1123

评论数:2

提示
确定要删除当前文章?
取消 删除