袖珍电子书:有限超实数的基本性质

     对于无穷小微积分而言,超实数发挥了极为关键的作用,这是毋庸置疑的。但是,每逢遇到实际问题无穷小超实数就(自动地)销声匿迹不见了,这是为什么?微积分的“鬼魂”到哪里去了?这是必须说清楚的。

          大家知道,实数系的“完备性”是其基本特征之一。但是,实数系的完备性究竟是什么呢?在《基础微积分》的”后记”(905页)J.Keisler叙述了实数系的完备性公理(Completeness Axiom)如下:

       “Let A be a set of real numbers such that whenever x and y are in A,any real number between x and y is in A,then A is an interval.”意思是说,如果对于实数集合A而言,其内部任何一条线段上的每一点均属于该集合A,那么,集合A必定是一个实数区间。从直观看,这是很明显的事实。

              在“后记”的第908页,J.keisler给出了一条非常重要的定理(也叫“标准部分原理”),如下:

                THEOREM(Standard Part Principle

          “For every finite hyperreal number b, there is exactly a real number r that is infinitely close to b.”

           这条定理的意思是:对于每一个有限超实数b,恰好存在一个实数r,使其无限地接近b(注意:我们也可以说,b无限地接近于r。)对于超实数的实际用用而言,这条定理无疑是极端重要的。为什么?这就是“每逢遇到实际问题无穷小超实数就(自动地)销声匿迹不见了”的真正原因。

           该定理的证明不难,但是,要用到实数系的完备性公理。这个事实充分说明无穷小微积分离不开传统微积分,只是换了一种表现方式而已。r的唯一性是很明显的,因为,不可能存在两个不同的实数(相差不是无穷小)同时无限地接近于同一个超实数b。这里,最关键的问题是:怎么证明实数r的存在性。

           考虑实数集合A= {x│x < b},也就是说,A是一切小于超实数b的实数集合。不难验证集合A满足实数完备性公理的条件,也就是说,A必定是一个实数区间,而且只有两种可能的形式:(-∞r)(-∞r]。对于每一个实数s< r(s在上述区间里面)s必然属于集合A,故必有s< b。另一方面,假定实数t>r,也就是说,t不属于集合A,故有t≥b。以上事实说明了什么呢?凡小于实数r的一切实数均小于超实数b,另一方面,凡大于实数r的每一个实数均大于或等于超实数b,所以,只有一种可能性:r无限地接近于有限超实数b

              回顾函数的导数与定积分的定义,这两者都使用了“取标准部分”(st)的操作程序,这就是说,当我们遇到无穷小微积分的实际应用时,事先必须通过“取标准部分”的操作程序将所有超实数的潜在因素统统除去。这就说明了一个事实:无穷小只是为展开微积分理论的需要而引进的一种“虚构”的数字,参与各种理论推导与计算过程,但是,遇到实际问题时,就最后消失不见了。由此可见,说无穷小微积分不是严格数学是完全站不住脚的。

             说明:实事表明,引入无穷小可以极大地简化了微积分学的理论体系,使微积分(工具)更加符合人的直觉观念及思维习惯,有助于人们自由地发挥自己的潜在智慧,激发出自由创造力的灵感“火花”。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值