2012年10月份,百度笔试题

转载 2015年07月09日 20:48:27

一、简答题

1、列举几个常见的哈希算法,简述哈希算法的主要用途

http://blog.csdn.net/zxycode007/article/details/6999984

这篇文章介绍的很清楚了。

主要用途:查找关键字、文件校验、数字签名

2、描述OSI的7层架构,并指出HTTP、UDP、ARP协议在那一层?

应用层:为应用程序提供网络服务

表示层:确保不同应用信息的识别

会话层:建立数据传输通路

传输层:进行流量控制、分割数据包,以及定义一些传输协议

网络层:提供IP地址服务、进行IP到MAC地址的转化

数据链路层:确保帧的无差错传输

物理层:提供bit或者电压的处理

ARP属于网络层,UDP属于传输层、HTTP属于应用层

3、简述让一段C语言代码运行起来的代码要求和执行过程。

         编译,编译程序读取源程序(字符流),对之进行词法和语法的分析,将高级语言指令转换为功能等效的汇编代码,再由汇编程序转换为机器语言,并且按照操作系统对可执行文件格式的要求链接生成可执行程序。

编译的过程:源代码-->预处理-->编译-->优化-->汇编-->链接-->执行

         预处理:头文件(Include file)的插入, 宏 (Macro) 的解开,条件编译(Conditional compilation)的处理 。

         编译:编译器首先要检查代码的规范性、是否有语法错误等,以确定代码的实际要做的工作,在检查无误后,编译器把代码翻译成汇编语言。

         汇编:将汇编语言转换成机器语言。

         链接:将参与链接的对象文件合并成一个可执行文件。

         (http://lavasoft.blog.51cto.com/62575/187229

二、算法与程序设计

1、 小杨拉来一车苹果进行包装,如果3个包一袋剩下2个,5个包一袋剩下3个,7个包一袋剩下2个,设计算法,求出N个符合条件的苹果个数。

思路:

1)N符合N%3 =2,N%5=3,N%7=2,可知(N-2)%3=0,(N-2)%7=0,(N-3)%5=0,

假设A=N-2,那么A%3=0,A%7=0,(A-1)%5=0,

所以,A是3与7的公倍数,且A-1的结尾是0或者5,

按照这个思路,就可以解题了。代码如下:

  1. <span style="font-size:18px;">void printFitApples(int n){  
  2.        //设有N个苹果,A=N-2  
  3.        int A = 0;  
  4.        while(n >= 0){  
  5.            A += 21;  
  6.            if((A-1) % 10 == 0 ||(A-1) % 10 == 5){  
  7.               System.out.println(A+2);  
  8.               n--;  
  9.            }  
  10.        }  
  11. }</span>  


2)如果要再优化的话,由于A每次是加21,因此,每次尾数增加1. 在尾数为1或6的时候,加上21*5=105,刚好会使得尾数为6或1,因此,每次进行 A+= 105,可以少做4/5次的运算。因此,符合的数字为23,23+105,23+2*105...23+n*105,故,直接使用公式23+n*105(n为自然数)就可以得到结果。(算法略)

 

2、 编写递归算法,查找字符串中相同字符连续出现的最大次数,例如:aaabbcc,最大连续重复数为3,abbc,最大连续重复数为2。

分析:对于字符串s,从位置d开始,到位置u结束(s[d,u])首先取出中间的位置mid=(d+u)/2,那么最大值分成3种情况

1) 最大值位于s[d,mid-1]中

2) 最大值位于s[mid+1,u]中

3) 最大值包含第mid个数,例如aabbbbcc,mid=(0+7)/2=3,最大值范围是[2,5],在第mid个数’b’的两边。需要对mid两边进行搜索以找出连续的字符个数。

按照这种方式进行递归查询,代码如下

 

  1. <span style="font-size:18px;">    //搜索[d,u]区域  
  2.     int getCountRecursion(char[] s, int d, int u){  
  3.        if(u <= d)  
  4.            return 1;  
  5.        int mid = (d+u)/2;  
  6.        int cLeft =getCountRecursion(s, d, mid-1);  
  7.        int cRight =getCountRecursion(s, mid+1, u);  
  8.        int cMid = 1,i = mid;  
  9.        //搜索cMid两边的字符  
  10.        while(--i>=d &&s[mid] == s[i] )  
  11.            cMid++;  
  12.        i= mid;  
  13.        while(++i<=u &&s[mid] == s[i] )  
  14.            cMid++;  
  15.         
  16.        returnmax(max(cLeft,cRight),cMid);  
  17. }</span>  

 

3、 见图

三、有一个数量大于100亿的整型数组,从小到大有序排列,现在该有序数组被分成若干字段,已知每段的数据个数不超过20个,但每个段内的数量不相同,且将每段内的数据重新进行打乱,得到一个新的数组。要求对得到的新的数组重新进行从小到大排序,求效率最高的算法,并给出时间复杂度分析。

         分析:100亿个数,整体已经排好序,但局部无序。若每个段都是固定的,那么,只需把每小段都进行排序即可,但每段的长度是不同的,又该如何分析?

         举个例子,原数组是:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

         每段数据不超过5进行打乱后(打乱的长度为5,3,4,3),数组为:

         2,5,3,4,1,7,8,6,11,9,12,10,14,15,13

         是一个整体有序,局部无序的数组。考虑到其限制:每段数据不超过5个,故数据位置的偏移量(偏离原来的位置)最多为4(乱序位置-原始位置,取绝对值),我们可以这么做

先对前5个排序,得到数组arr=1,2,3,4,5

再对6到10个数进行插入arr排序,得到arr=1,2,3,4,5,6,7,8,9,10

再对11到15个数进行插入arr排序,得到arr=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

整个数组排序完成。

观察这个结果,假设第1到第5n个数已经有序为sort(5n),那么我们要将5n+1到5n+5这5个数据添加到已排序的数组中,只需要进行插入排序,将这5个数添加进即可。由于分段的长度不超过5,所以第5n+1个数在插入的时候,最多只需要搜索到第5n-4个数就可以了,比较个数不会超过5次。又因为5n+1到5n+5是已经排好序的,所以,后面的数比较次数也不会超过5次(最多比较到前一个插入的位置)。因此,每加入5个数到已排序数组中,时间复杂度是O(5*5),

         假设长度为N,每段长不超过K。则每段插入的时间复杂度即为O(K*K)。

而对于以段为单位插入的操作,需要进行N/K次,所以,总的时间复杂度是O(K*K)*O(N/K)=O(NK)

回到原题由于每个段的长度不超过20,我们可以先以20为长度单位,从前到后,对每一小段进行插入前面的数组的插入排序,就能够完成。考虑到数组较长,无法全部存入内存,故无需对整个数组进行存储,只需要取要插入的段前面的那个数组就可以了(原因之前分析过)。可以在每排序完一定长度的数组时,进行存储并释放内存。

尝试过先对小段排序,再进行插入,发现耗费时间大概为直接插入的三倍,哎~画蛇添足。

代码如下,先打乱,再排序

  1. public class SegmentSort {  
  2.   
  3.     Random random = new Random();  
  4.       
  5.     //以maxSegmentLen为最大长度,进行数组打乱  
  6.     void disorder(int[] arr, int maxSegmentLen){  
  7.         int ranInt = random.nextInt(maxSegmentLen);  
  8.         int i = 1;  
  9.         while(i+ranInt < arr.length){  
  10.             disorderSegment(arr, i, i+ranInt);  
  11.             i = i+ranInt+1;  
  12.             ranInt = random.nextInt(maxSegmentLen);  
  13.         }  
  14.     }  
  15.       
  16.     //将arr[start,end],进行打乱  
  17.     void disorderSegment(int[] arr,int start,int end){  
  18.         int len = end-start;  
  19.         for(int i = 1;i<len;i++){  
  20.             int r = random.nextInt(len);  
  21.             Tools.swap(arr,start+i,start+r);  
  22.         }  
  23.     }  
  24.       
  25.     void sort(int[] arr, int maxSegmentLen){  
  26. //      可以预先对小段排序,但时间会耗费更长  
  27. //      for(int i=1;i<arr.length;i += maxSegmentLen)  
  28. //          Arrays.sort(arr,i,i+maxSegmentLen);  
  29.           
  30.         for(int i=1;i<arr.length;i += maxSegmentLen)  
  31.             insertInto(arr, i, maxSegmentLen);  
  32.     }  
  33.       
  34.     //将arr[sortedEnd,sortedEnd+maxSegmentLen),  
  35.     //插入arr[0,sortedEnd)中进行插入排序  
  36.     void insertInto(int[] arr, int sortedEnd,int maxSegmentLen){  
  37.         int insertEnd = Math.min(arr.length, sortedEnd+maxSegmentLen);  
  38.         for(int i = sortedEnd;i<insertEnd;i++){  
  39.             int t = i;  
  40.             while(arr[t] < arr[t-1]){  
  41.                 Tools.swap(arr, t, t-1);  
  42.                 t--;  
  43.             }  
  44.         }  
  45.     }  
  46.       
  47.     public static void main(String[] args) {  
  48.         int LEN = 1000;  
  49.         int SEGMENT_LEN = 22;  
  50.         int[] arr = new int[LEN+1];  
  51.         arr[0] = Integer.MIN_VALUE; //arr[0]作为哨兵  
  52.         //初始化  
  53.         for(int i = 1;i<=LEN;i++){  
  54.             arr[i] = i;  
  55.         }  
  56.         SegmentSort segmentSort = new SegmentSort();  
  57.         segmentSort.disorder(arr, SEGMENT_LEN);  
  58.           
  59.         segmentSort.sort(arr,SEGMENT_LEN);  
  60. //      用于验证排序是否正确  
  61. //      for(int i = 1;i<=LEN;i++)  
  62. //          if(arr[i] != i)  
  63. //              Tools.println("sort error! "+i);   
  64.     }  
  65. }  

相关文章推荐

2012年10月份,百度笔试题

一、简答题 1、列举几个常见的哈希算法,简述哈希算法的主要用途 http://blog.csdn.net/zxycode007/article/details/6999984 这篇文章介绍的很清...
  • zyy5411
  • zyy5411
  • 2012年10月23日 21:03
  • 2840

谷歌2013校园招聘笔试题(附答案) 日期 2012年10月15日 有添加自己的解答

1、单项选择题 1.1 如果把传输速率定义为单位时间内传送的信息量(以字节计算)多少。关于一下几种典型的数据传输速率: 1.使用USB2.0闪存盘,往USB闪存盘上拷贝文件的数据传输速率 ...
  • YorkCai
  • YorkCai
  • 2013年01月07日 20:21
  • 1304

百度2014校园招聘笔试题(10月13北京)

百度2014校园招聘笔试题

2012年5月6日 百度实习研发工程师笔试题(通用)

1. 单词a中任意字母交换位置变为单词b,我们就称单词a,b为兄弟单词,如 army 与 mary为兄弟单词。现给一个单词字典,用户输入一个单词,找出字典中所有的兄弟单词,请写出你的解题思路和算法...

2012年5月6日百度PHP开发工程师笔试题(不让带出来,脑子的印象)

1. 有一个单词a,其中任意字母交换位置变为单词b,我们称单词a,b为兄弟单词,b为a的兄弟单词,例如: army 与 mary为兄弟单词。现给定一个单词字典,用户任意输入一个单词,请从字典中找到所有...

两道面试题:2012年10月9号阿里巴巴笔试

1. n个无序整数,已知第i个数在排好序的序列中的位置为j,满足|i-j| 的得两分,总分是20分。 借鉴的答案: 答:由以上条件判断最小的数字一定在前k个中,于是可以讲前k个数建...

搜狐2015年10月18日在线笔试题大题第一道答案

考的的是约瑟夫环,还是挺简单的, 15个教徒和15个非教徒在深海上遇险,必须将一半的人投入海中,其余的人才能幸免于难,于是想了一个办法:30个人围成一个圆圈,从第一个人开始报数,每数到第九个人就...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:2012年10月份,百度笔试题
举报原因:
原因补充:

(最多只允许输入30个字)