拉普拉斯矩阵/映射/聚类

本文介绍了拉普拉斯矩阵的概念、性质及其在数据降维和聚类中的应用。拉普拉斯矩阵是描述图的矩阵,具有半正定性,并在谱聚类和拉普拉斯特征映射中发挥关键作用。通过拉普拉斯特征映射,数据可以在保持相似度的情况下映射到低维空间,用于降维。同时,拉普拉斯矩阵在谱聚类中通过最小割策略,有效地进行数据分组,保留了数据的相似度信息,提高了聚类效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  拉普拉斯矩阵是个非常巧妙的东西,它是描述图的一种矩阵,在降维,分类,聚类等机器学习的领域有很广泛的应用。

什么是拉普拉斯矩阵

拉普拉斯矩阵

  先说一下什么是拉普拉斯矩阵,英文名为Laplacian matrix,其具体形式得先从图说起,假设有个无向图如下所示,
  

无向图

  其各个点之间的都有相应的边连接,我们用某个指标(这地方可以任意选择,比如欧氏距离、测地距离、或者高斯相似度等)来衡量两个点的相似度,表示为 W=wij ,没有边连接的其相似度自然为零, W 是个对称矩阵;某个点的与所有点的相似度之和,表示为 D=dig(d);d=rowSum(W) D 是个对角阵;我们的拉普拉斯矩阵则是 L=DW

拉普拉斯矩阵的性质

  性质:
  (1) L 是半正定矩阵。
  (2) L 的最小特值为0,对应特向为全1列向量。
  (3)对 Lf=λDf m 个非负实特征值, 0=λ1λ2...λm .
  (4)对于任意一个属于实向量 fRm ,都有此公式成立:
   fTLf=12mi,j=1wij(fifj)2
  它又有什么用处呢?跟目标是有关系的,哈哈~
  证明如下:   f m1 的实数列向量
   fTLf=fTDffTWf
   =fTdig(d)ffTWf
   =mi=1dif2imj=1[i=1fjwij]fj

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值