关闭

[HNOI2008]Cards (polya定理+乘法逆元,费马小定理)

标签: HNOI2008Cardspolya定理burnside定理乘法逆元费马小定理
337人阅读 评论(0) 收藏 举报
分类:

1004: [HNOI2008]Cards

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2429  Solved: 1423
[Submit][Status][Discuss]

Description

小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述
一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,
第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态。

Output

不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

Source

[Submit][Status][Discuss]

HOME Back


解析:这道题用到的定理就是burnside定理与polya定理,这两个定理自己去看(http://wenku.baidu.com/view/bf92a95f804d2b160b4ec0be.html),这里不再细述,我就简要说一下做法。


第一步:polya定理求解方案数L

 

      其中,|G|代表置换个数(这里要加一个置换:1 2 。。。 n,所以|G|=m+1),D(ai)表示在置换aj下不变的元素的个数。

       下面简要说一下如何求解D(ai):

        1.对于置换ai,求解其循环数s[0]以及每个循环的长度s[i]。

          比如:1 2 3 4  

                     2 3 1 4  

          有两个循环(1,2,3)(4)。

         2.用f[i][j][k]表示对于前 x 个循环,使用 i 个sr,j个sb,k个sg能够得到的不同方案数,则:

                f[i][j][k]=f[i-s[x]][j][k]+f[i][j-s[x]][k]+f[i][j][k-s[x]] (每个循环内的颜色相同)

            D(ai)=f[sr][sb][sg];


第二步:乘法逆元取模

 根据费马小定理,若p未知数,那么a^(p-1)%p=1。

L%p=(D(a1)%p+..+D(a|G|)%p) * (|G|)^(-1) %p

       =(D(a1)%p+..+D(a|G|)%p) * (|G|)^(-1) *(|G|)^(p-1) %p

       =(D(a1)%p+..+D(a|G|)%p) * (|G|)^(p-2) %p


其他的自己看代码就能懂了,有疑问的在提吧。

代码:

#include<cstdio>
#include<cstring>
#define ms(a) memset(a,0,sizeof(a)) 
using namespace std;

const int maxn1=20;
const int maxn2=60;
int sr,sb,sg,m,p,sum;
int a[maxn2+10],s[maxn2+10];
bool used[maxn2+10];
int f[maxn1+10][maxn1+10][maxn1+10];

void circle()
{
  int i,j;
  ms(used),ms(s);
  for(i=1;i<=sum;i++)if(!used[i])
    {
      s[++s[0]]=1,used[i]=1,j=a[i];
      while(!used[j])used[j]=1,j=a[j],s[s[0]]++;
	}
}

int dp()
{
  ms(f);
  int x,i,j,k;
  f[0][0][0]=1;
  for(x=1;x<=s[0];x++)
    for(i=sr;i>=0;i--)
      for(j=sb;j>=0;j--)
        for(k=sg;k>=0;k--)
          {
            if(i>=s[x])f[i][j][k]+=f[i-s[x]][j][k];
            if(j>=s[x])f[i][j][k]+=f[i][j-s[x]][k];
            if(k>=s[x])f[i][j][k]+=f[i][j][k-s[x]];
            f[i][j][k]%=p;
		  }
  return f[sr][sb][sg];
}

int pow_mod(int a,int b)
{
  int ans=1;
  while(b)
    {
      if(b&1)ans=(ans*a)%p;
      a=(a*a)%p,b>>=1;
	}	
  return ans;
}

int main()
{
  //freopen("1.in","r",stdin);
  int i,ans;
  scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p);
  sum=sr+sb+sg;
  for(i=1;i<=sum;i++)a[i]=i;
  circle(),ans=dp();
  for(i=1;i<=m;i++)
    {
      for(i=1;i<=sum;i++)scanf("%d",&a[i]);
      circle(),ans=(ans+dp())%p;
	}
  ans=ans*pow_mod(m+1,p-2)%p;
  printf("%d\n",ans);
  return 0;
}


0
0
查看评论

乘法逆元与费马小定理

逆元:类似倒数和相反数的概念,具体自己百度,我也是百度的,这让我想起了离散数学中提到了左逆右逆,哎,离散没学好啊。乘法逆元:我们知道(A/B)%M=(A∗(1/B))%M(A/B)\%M=(A*(1/B))\%M。另1/B1/B等于HH,那么HH就是B关于M的乘法逆元,其实就是关于M的一个相反数,B...
  • FlushHip
  • FlushHip
  • 2016-05-17 19:54
  • 840

【bzoj1004】Cards【Polya计数定理】【递推】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 这是一道Polya好题~ 根据那个什么引理,本质不同的方案数等于每个置换下不同的方案数的平均值。 但是Polya定理是: l=1|G|∑f∈Gkm(f)l=\frac 1{|G|...
  • ZMOIYNLP
  • ZMOIYNLP
  • 2015-03-22 20:48
  • 595

bzoj1004: [HNOI2008]Cards [Burnside&Ploya+求逆元]

今晚还有点时间刷完水题以后把1004试着
  • baidu_20126217
  • baidu_20126217
  • 2014-09-19 22:38
  • 471

[BZOJ1004][HNOI2008]Cards

置换群,Burnside引理的应用.注意置换群中一定有一个”不变”元素,计算时要记得考虑.
  • Zvezda_
  • Zvezda_
  • 2016-03-14 21:54
  • 347

BZOJ 1004 [HNOI2008]Cards 置换+burnside定理+逆元

BZOJ 1004 [HNOI2008]Cards 置换+burnside定理+逆元
  • wzq_QwQ
  • wzq_QwQ
  • 2015-07-24 14:47
  • 2148

【数论】【动态规划】[BZOJ1004][HNOI2008]Cards

题目描述小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法...
  • JeremyGJY
  • JeremyGJY
  • 2016-02-02 14:50
  • 422

[BZOJ1004]HNOI2008 Cards |polya|置换群|DP|乘法逆元

数学题真是太难了。。。我是看论文看懂的,polya原理和Burnside引理,不过论文里也没有具体证明,,就是照搬着用了。。还要求一次乘法逆元,上扩欧就是了。还有一个就是加上颜色数量限制的带权染色方案数,用一个背包dp,f[i][sa][sb][sc]表示用三种颜色数各为sa,sb,sc染完前i带权...
  • Tag_king
  • Tag_king
  • 2015-04-17 09:21
  • 228

HYSBZ/BZOJ 1004 [HNOI2008] Cards - 组合数学

题目描述分析: 输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。 这句话是说: (1). m种洗牌方式保证能把所有排列的变换出来,且每种洗牌方式仅且仅用一次就够了,即不用多种洗牌方式叠加使用。 (2). 对于一个排列A,通过m种不同...
  • yuanxinyu402
  • yuanxinyu402
  • 2016-02-02 16:30
  • 168

[Polya群论]BZOJ1004: [HNOI2008]Cards

BZOJ1004
  • u013591931
  • u013591931
  • 2014-03-15 15:10
  • 1217

Polya定理的学习

以下内容来自转载: 涉及到组合数学的问题,首先是群的概念: 设G是一个集合,*是G上的二元运算,如果(G,*)满足下面的条件: 封闭性:对于任何a,b∈G,有a*b∈G; 结合律:对任何a,b,c∈G有(a*b)*c=a*(b*c); 单位元:存在e∈G,使得对所有...
  • qq_33765907
  • qq_33765907
  • 2016-05-03 21:36
  • 700
    个人资料
    • 访问:287584次
    • 积分:6446
    • 等级:
    • 排名:第4465名
    • 原创:353篇
    • 转载:59篇
    • 译文:0篇
    • 评论:32条
    最新评论