关闭

[HNOI2008]Cards (polya定理+乘法逆元,费马小定理)

标签: HNOI2008Cardspolya定理burnside定理乘法逆元费马小定理
235人阅读 评论(0) 收藏 举报
分类:

1004: [HNOI2008]Cards

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2429  Solved: 1423
[Submit][Status][Discuss]

Description

小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述
一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,
第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态。

Output

不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

Source

[Submit][Status][Discuss]

HOME Back


解析:这道题用到的定理就是burnside定理与polya定理,这两个定理自己去看(http://wenku.baidu.com/view/bf92a95f804d2b160b4ec0be.html),这里不再细述,我就简要说一下做法。


第一步:polya定理求解方案数L

 

      其中,|G|代表置换个数(这里要加一个置换:1 2 。。。 n,所以|G|=m+1),D(ai)表示在置换aj下不变的元素的个数。

       下面简要说一下如何求解D(ai):

        1.对于置换ai,求解其循环数s[0]以及每个循环的长度s[i]。

          比如:1 2 3 4  

                     2 3 1 4  

          有两个循环(1,2,3)(4)。

         2.用f[i][j][k]表示对于前 x 个循环,使用 i 个sr,j个sb,k个sg能够得到的不同方案数,则:

                f[i][j][k]=f[i-s[x]][j][k]+f[i][j-s[x]][k]+f[i][j][k-s[x]] (每个循环内的颜色相同)

            D(ai)=f[sr][sb][sg];


第二步:乘法逆元取模

 根据费马小定理,若p未知数,那么a^(p-1)%p=1。

L%p=(D(a1)%p+..+D(a|G|)%p) * (|G|)^(-1) %p

       =(D(a1)%p+..+D(a|G|)%p) * (|G|)^(-1) *(|G|)^(p-1) %p

       =(D(a1)%p+..+D(a|G|)%p) * (|G|)^(p-2) %p


其他的自己看代码就能懂了,有疑问的在提吧。

代码:

#include<cstdio>
#include<cstring>
#define ms(a) memset(a,0,sizeof(a)) 
using namespace std;

const int maxn1=20;
const int maxn2=60;
int sr,sb,sg,m,p,sum;
int a[maxn2+10],s[maxn2+10];
bool used[maxn2+10];
int f[maxn1+10][maxn1+10][maxn1+10];

void circle()
{
  int i,j;
  ms(used),ms(s);
  for(i=1;i<=sum;i++)if(!used[i])
    {
      s[++s[0]]=1,used[i]=1,j=a[i];
      while(!used[j])used[j]=1,j=a[j],s[s[0]]++;
	}
}

int dp()
{
  ms(f);
  int x,i,j,k;
  f[0][0][0]=1;
  for(x=1;x<=s[0];x++)
    for(i=sr;i>=0;i--)
      for(j=sb;j>=0;j--)
        for(k=sg;k>=0;k--)
          {
            if(i>=s[x])f[i][j][k]+=f[i-s[x]][j][k];
            if(j>=s[x])f[i][j][k]+=f[i][j-s[x]][k];
            if(k>=s[x])f[i][j][k]+=f[i][j][k-s[x]];
            f[i][j][k]%=p;
		  }
  return f[sr][sb][sg];
}

int pow_mod(int a,int b)
{
  int ans=1;
  while(b)
    {
      if(b&1)ans=(ans*a)%p;
      a=(a*a)%p,b>>=1;
	}	
  return ans;
}

int main()
{
  //freopen("1.in","r",stdin);
  int i,ans;
  scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p);
  sum=sr+sb+sg;
  for(i=1;i<=sum;i++)a[i]=i;
  circle(),ans=dp();
  for(i=1;i<=m;i++)
    {
      for(i=1;i<=sum;i++)scanf("%d",&a[i]);
      circle(),ans=(ans+dp())%p;
	}
  ans=ans*pow_mod(m+1,p-2)%p;
  printf("%d\n",ans);
  return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:242599次
    • 积分:5956
    • 等级:
    • 排名:第4705名
    • 原创:353篇
    • 转载:59篇
    • 译文:0篇
    • 评论:24条
    最新评论