Classical Algorithm-有限群论+费马小定理+polya

Classical Algorithm-有限群论+费马小定理+polya

G G G 上的运算 × \times × 满足 G × G → G G\times G\rightarrow G G×GG
1. 封闭性: ∀ x , y ∈ G , x × y ∈ G ; {\forall}x,y\in G, x\times y \in G; x,yG,x×yG;
2. 单位元: ∃ e ∈ G , ∀ x ∈ G , x × e = e × x = x ; {\exists}e \in G, \forall x \in G, x\times e=e\times x =x; eG,xG,x×e=e×x=x;
3. 逆元: ∀ x ∈ G , ∃ x − 1 , x × x − 1 = e ; \forall x \in G, \exists x^{-1}, x\times x^{-1}=e; xG,x1,x×x1=e;
4. 结合律: ∀ x , y , z ∈ G , ( x × y ) × z = x × ( y × z ) ; \forall x,y,z\in G, (x\times y)\times z=x\times(y\times z); x,y,zG,(x×y)×z=x×(y×z);

子群(subgroup)

H ⊂ G , 同 时 H 在 G 的 × 下 构 成 一 个 群 。 有 限 群 中 ∣ G ∣ ≡ 0 ( m o d   ∣ H ∣ ) H \subset G, 同时H在G的\times 下构成一个群。有限群中|G|\equiv 0(mod\ |H|) HG,HG×G0(mod H)

陪集(coset)

对 一 个 子 群 H , g ∈ G , g × H 是 群 G 的 一 个 左 陪 集 。 对一个子群H,g\in G,g\times H是群G的一个左陪集。 HgG,g×HG
Lemma 1 g 1 , g 2 ∈ G , g 1 × H ∩ g 2 × H ≠ ∅ , 当 且 仅 当 g 1 × H = g 2 × H g_1,g_2 \in G, g_1\times H\cap g_2\times H\neq \empty,当且仅当g_1\times H=g_2 \times H g1,g2G,g1×Hg2×H=,g1×H=g2×H
g 1 , g 2 ∈ H → g 2 = g 1 h → g 2 × H = g 1 h × H ⊂ g 1 H → g 2 H ⊂ g 1 H g_1,g_2 \in H \rightarrow g_2=g_1 h\rightarrow g_2\times H=g_1 h\times H\subset g_1 H\rightarrow g_2H\subset g_1H g1,g2Hg2=g1hg2×H=g1h×Hg1Hg2Hg1H
同理 g 1 H ⊂ g 2 H → g 1 H = g 2 H g_1 H\subset g_2 H\rightarrow g_1H=g_2H g1Hg2Hg1H=g2H
每个陪集都是一个等价类。
等价关系 g 1 ∼ g 2 g_1\sim g_2 g1g2
1.自反: a ∼ a a\sim a aa
2.对称: a ∼ b → b ∼ a a\sim b \rightarrow b\sim a abba
3.传递: a ∼ b , b ∼ c → a ∼ c a\sim b,b\sim c\rightarrow a\sim c ab,bcac

7的模群, G G G={1,2,3,4,5,6}; H H H={1,6}
∣ G ∣ = 6   ∣ H ∣ = 2   ∣ G : H ∣ = 3 |G|=6\ |H|=2\ |G:H|=3 G=6 H=2 G:H=3
可以证明对于同一个 H H H,不同等价类里的元素个数相同,都是 ∣ H ∣ |H| H
∣ H 1 ∣ + ∣ H 2 ∣ + ∣ H 3 ∣ . . + ∣ H k ∣ = ∣ G ∣ |H_1|+|H_2|+|H_3|..+|H_k|=|G| H1+H2+H3..+Hk=G
k ∣ H ∣ = ∣ G ∣ k|H|=|G| kH=G
Lagrange Theorem:
∣ G ∣ = ∣ G : H ∣ ∣ H ∣ |G|=|G:H||H| G=G:HH
费马小定理:对于一个p的模群中的一个元素的循环群 H H H,必然是模群 G G G的一个子群
循 环 群 : a ∣ H ∣ = 1 ( m o d   p ) 循环群:a^{|H|}=1(mod \ p) aH=1(mod p)
L a g r a n g e : a ∣ G ∣ = 1 ( m o d   p ) Lagrange:a^{|G|}=1(mod\ p) LagrangeaG=1(mod p)
对质数有最大 ∣ H ∣ = p − 1 |H|=p-1 H=p1,和数为 Φ ( p ) \Phi(p) Φ(p);

置换群

orbit-stabilizer theorem:
stabilizer: G x = { g ∈ G ∣ g   x = x } G_x=\{g\in G|g\ x=x\} Gx={gGg x=x}(x的stabilizer)
X g = { x ∈ X ∣ g   x = x } X^g=\{x\in X|g\ x=x\} Xg={xXg x=x}
orbit: G   x = G : G x G\ x=G:G_x G x=G:Gx
∣ G   x ∣ ∣ G x ∣ = ∣ G ∣ |G\ x||G_x|=|G| G xGx=G
Burnside:
Σ x ∈ X ∣ G x ∣ = ∣ G ∣ Σ x ∈ X 1 ∣ G   x ∣ = ∣ G ∣ Σ x ∈ X / G Σ x ∈ A 1 ∣ A ∣ \Sigma_{x\in X} |G_x|=|G|\Sigma_{x\in X} \frac{1}{|G\ x|}= |G|\Sigma_{x\in X/G}\Sigma_{x\in A}\frac{1}{|A|} ΣxXGx=GΣxXG x1=GΣxX/GΣxAA1
= ∣ G ∣ Σ x ∈ X / G 1 = ∣ G ∣ ∣ X / G ∣ = Σ g ∈ G ∣ X g ∣ = |G|\Sigma_{x\in X/G}1=|G||X/G|=\Sigma_{g\in G} |X^g| =GΣxX/G1=GX/G=ΣgGXg
∣ X / G ∣ = 1 ∣ G ∣ Σ g ∈ G ∣ X g ∣ |X/G|=\frac{1}{|G|}\Sigma_{g\in G} |X^g| X/G=G1ΣgGXg

Polya

m种颜色的染色问题,置换群元 g ∈ G g\in G gG拆分成互不相交的 c ( g ) c(g) c(g)个循环乘积,每个循环中颜色都要对应,有m种选择, ∣ X g ∣ = m c ( g ) |X^g|=m^{c(g)} Xg=mc(g),再用Burnside,
∣ X / G ∣ = 1 ∣ G ∣ Σ g ∈ G m c ( g ) |X/G|=\frac{1}{|G|}\Sigma_{g\in G}m^{c(g)} X/G=G1ΣgGmc(g)

Example

四点的三染色
只允许保距变换
G = { e , r 1 , r 2 , r 3 } G=\{e,r^1,r^2,r^3\} G={e,r1,r2,r3}
e = ( 1 ) ( 2 ) ( 3 ) ( 4 ) , r 1 = ( 4123 ) , r 2 = ( 13 ) ( 24 ) , r 3 = ( 2341 ) e=(1)(2)(3)(4),r^1=(4123),r^2=(13)(24),r^3=(2341) e=(1)(2)(3)(4),r1=(4123),r2=(13)(24),r3=(2341)
∣ X / G ∣ = 1 4 ( 3 4 + 3 1 + 3 2 + 3 1 ) = 24 |X/G|=\frac{1}{4}(3^4+3^1+3^2+3^1)=24 X/G=41(34+31+32+31)=24

UVA10601
有12根不同颜色的棒,可以组成多少个本质不同的正方体

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
方向估计是在信号处理中的一个重要问题,其目的是确定从不同方向传入的信号源。经典的方向估计方法包括波束形成、最大似然估计和最小二乘估计等,而现代的方向估计方法则包括了高分辨率谱估计和基于子空间方法等。 波束形成是一种经典的方向估计方法,它利用了阵列天线的结构特性,通过调整不同天线的相位和幅度权重来形成一个波束,以达到对不同方向信号源的波束聚集。这种方法通常需要大规模的天线阵列,并且对信号源的数量和方向有一定的限制。 最大似然估计是另一种经典的方向估计方法,它基于统计学原理,通过对接收信号的统计特性进行概率建模,从而推测信号源的方向。最大似然估计在理论上是最优的,但在实践中通常需要知道较多的信号源信息,并且对噪声的统计特性有一定的要求。 最小二乘估计是一种基于数学优化的经典方向估计方法,它通过最小化接收信号与估计信号方向的残差平方和来估计信号源的方向。这种方法对噪声的统计特性要求相对较低,适用于多种应用场景。 高分辨率谱估计是现代方向估计方法中的一种,它基于接收信号的统计特性,通过提取信号的频谱信息来估计信号源的方向。这种方法可以达到很高的方向分辨能力,但需要较长的样本序列,并且对信号源的数量和方向有一定的限制。 基于子空间的方向估计方法是现代方向估计中的另一种重要技术,它利用信号子空间和噪声子空间的性质来估计信号源的方向。这种方法适用于低信噪比环境下的方向估计,并且对信号源的数量和方向没有明显的限制。 综上所述,经典和现代的方向估计方法各有其优势和适用场景。在具体应用中,需要根据实际需求和系统条件选择合适的方向估计方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值