Caffe中的损失函数解析

导言
在有监督的 机器学习 中,需要有标签数据,与此同时,也需要有对应的损失函数(Loss Function)。

在Caffe中,目前已经实现了一些损失函数,包括最常见的L2损失函数,对比损失函数,信息增益损失函数等等。在这里做一个笔记,归纳总结Caffe中用到的不同的损失函数,以及分析它们各自适合的使用场景。

欧式距离损失函数(Euclidean Loss)

输入:

预测的值:  y ^ [,+]  , 其中,它们的形状为: N×C×H×W 

标签的值:  y[,+]  , 其中,它们的形状为: N×C×H×W 

输出:

损失的值: Loss=12N  N n=1 y ^  n y n  2 2  

适合场景:

回归,特别是其回归的值是实数值得时候。

对比损失函数(Contrastive loss)

输入:

形状: (N×C×1×1)   特征  a[,+] 

形状: (N×C×1×1)   特征  b[,+] 

形状: (N×1×1×1)   相似性  y[0,1] 

输出:

形状: (1×1×1×1) 

对比损失函数为:  E=12N  n=1 N (y)d+(1y)max(margind,0) 

其中  d=||a n b n || 2 2   .

适合场景:

可以用来训练Siamese网络

铰链损失函数(Hinge Loss)

输入:

形状: (N×C×H×W)   预测值  t[,+]   代表着预测  K=CHW   个类中的得分(注:CHW表示着在网络设计中,不一定要把预测值进行向量化,只有其拉直后元素的个数相同即可。) . 在SVM中,  t   是 D 维特征 XR D×N   , 和学习到的超平面参数 WR D×K    内积的结果  X T W   
所以,一个网络如果仅仅只有全连接层 + 铰链损失函数,而没有其它的可学习的参数,那么它就等价于SVM

标签值:

(N×1×1×1)   标签  l  , 是一个整数类型的数  l n [0,1,2,...,K1]   其代表在  K   个类中的正确的标签。

输出:

形状: (1×1×1×1)   
损失函数计算:  E=1N  n=1 N  k=1 K [max(0,1δ{l n =k}t nk )] p   L p    范数 (默认是  p=1  , 是 L1 范数; L2 范数,正如在 L2-SVM中一样,也有实现),

其中  δ{}={11 成立不成立  

应用场景:

在一对多的分类中应用,类似于SVM.

信息增益损失函数(InformationGain Loss)

输入:

  1. 形状: (N×C×H×W)   预测值  p ^ [0,1]   内, 表示这预测每一类的概率,共  K=CHW   个类, 每一个预测 概率 p ^  n    的和为1:  n k=1 K p ^  nk =1  .

  2. 形状: (N×1×1×1)   标签值:  l  , 是一个整数值,其范围是  l n [0,1,2,...,K1]   表示着在  K   个类中的索引。

  3. 形状: (1×1×K×K)   (可选) 信息增益矩阵  H  .作为第三个输入参数,. 如果  H=I  , 则它等价于多项式逻辑损失函数

输出:

形状: (1×1×1×1) 

计算公式:  E=1N  n=1 N H l n  log(p ^  n )=1N  n=1 N  k=1 K H l n ,k log(p ^  n,k )  , 其中  H l n     表示 行  l n    of  H  .

多项式逻辑损失函数(Multinomial Logistic Loss)

输入:

形状: (N×C×H×W)   预测值  p ^ [0,1]  范围中, 表示这预测的每一类的概率,共  K=CHW   个类. 每一个预测概率 p ^  n    的和为1:  n k=1 K p ^  nk =1  .

形状: (N×1×1×1)   标签  l  , 是一个整数值,其范围是  l n [0,1,2,...,K1]   表示着在  K   个类中的索引。

输出:

形状: (1×1×1×1)   计算公式:  E=1N  n=1 N log(p ^  n,l n  ) 

应用场景:

在一对多的分类任务中使用,直接把预测的概率分布作为输入.

Sigmoid 交叉熵损失函数(Sigmoid Cross Entropy Loss)

输入:

  1. 形状:  (N×C×H×W)   得分  x[,+]  , 这个层使用 sigmoid 函数  σ(.)   映射到概率分布  p ^  n =σ(x n )[0,1] 

  2. 形状: (N×C×H×W)   标签  y[0,1] 

输出:

  1. 形状: (1×1×1×1)   计算公式:  E=1n  n=1 N [p n logp ^  n +(1p n )log(1p ^  n )] 

应用场景: 
预测目标概率分布

Softmax+损失函数(Softmax With Loss)

输入:

  1. 形状: (N×C×H×W)   预测值  x[,+]   代表预测每个类的得分。 共  K=CHW   类. 这一层把得分通过softmax映射到概率分布  p ^  nk =exp(x nk )/[ k   exp(x nk   )] 

  2. 形状: (N×1×1×1)   标签值 是一个整数值,其范围是  l n [0,1,2,...,K1]   表示着在  K   个类中的索引。

输出:

  1. 形状: (1×1×1×1)   计算公式:  E=1N  n=1 N log(p ^  n,l n  )  , 其中  p ^    为softmax输出的类概率。

应用场景:

在一对多分类中应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值