CF 251D Two Sets 异或高斯消元找最优解

题目大意

给你 N 个数ai,要求把这些数分成两堆,使第一堆的异或和加第二堆的异或和最大,在满足这个条件下使第一堆的异或和最小,输出方案。

N<=105
ai<=1018

解体思路

一看到这种异或题就会想到对每个数一位一位的处理,由于是要把一堆数分成两堆,我们就考虑一下分开后的情况。由于异或就是在模2意义下的无进位加法,我们就只考虑1。如果对于某一位,一开始是由奇数个一异或,那么分开两组后必定是有一组有奇数个1,一组有偶数个1,那么不管怎么分组对答案都不会有影响,但我们也要尽量把奇数个一分到第一组使第一堆的异或和尽量小。而如果总共有偶数个1就不同了,由于当且仅当分开的组中的某一位有奇数个1时才会对答案造成影响,所以我们要尽可能的把偶数个1分成有奇数个1的两组。由此我们可以对每一个偶数为列出一个异或方程,形如 fk:x1a1+x2a2+x3a3.....=1/0 xi 表示第一组是否选这个数, ai 表示第 i 个数第k位的二进制值,如果当前位含偶数个1则等式右边为1,否则为0)。
那应该怎么实现呢?
我们可以先做含偶数个1的位,然后从高位往低位枚举,以保证答案的最优性。每做一位,我们就新添加以个方程,为了满足高斯消元的要求,我们先把之前方程要消的项消掉。如果我们发现消完后这个方程的所有系数都为0,即所有 ai 为0,那就以为着这条方程已经没有意义了,可以直接消掉,否则就再有这条第一个系数不为0的项去消别的方程。到最后剩下来的每个方程的会有一个系数为1的项,而这个所对应的 xi 的值就是等式右边的值,而没有涉及到的 x 就可以任取,对答案不会造成影响,同时我们可以用bitset来优化时间复杂度。(这已经把程序的实现步骤讲出来了。。。。。。)

程序

附上简洁的代码!

//CF251D Two Sets YxuanwKeith
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <bitset>

using namespace std;
typedef long long LL;

const int MAXN = 1e5 + 5, MAXM = 62;

bitset<MAXN> Map[MAXM + 1], F[MAXM + 1]; 

int tot, N, Ok[MAXM + 1], Ans[MAXN];
LL All;

int main() {
    freopen("4021.in", "r", stdin), freopen("4021.out", "w", stdout);

    scanf("%d", &N);
    for (int i = 1; i <= N; i ++) {
        LL Num;
        scanf("%lld", &Num);
        All ^= Num;
        for (int j = 0; j <= MAXM; j ++) 
            if (Num & (1ll << j)) Map[j][i] = 1;
    }
    for (int j = 0; j < 2; j ++) {
        for (int i = MAXM; i >= 0; i --) 
            if (((All >> i) & 1) == j) {
                F[++ tot] = Map[i], Ok[tot] = N + 2, F[tot][N + 1] = 1 - j;
                for (int k = 1; k < tot; k ++) if (F[tot][Ok[k]]) F[tot] ^= F[k];
                for (int k = 1; k <= N; k ++) if (F[tot][k]) { Ok[tot] = k; break;}
                if (Ok[tot] > N) {tot --; continue;}
                for (int k = 1; k < tot; k ++) if (F[k][Ok[tot]]) F[k] ^= F[tot];

            }
    }
    for (int i = 1; i <= tot; i ++) Ans[Ok[i]] = F[i][N + 1];
    for (int i = 1; i <= N; i ++) printf("%d ", 2 - Ans[i]);
}
Gröbner基的特殊高斯消元算法通过特殊的高斯消元法来计算Gröbner基。这种算法可以处理规模很大的问题,因为它使用了一些技巧来减少计算量。 算法步骤: 1. 对于给定的理想$I$,构造一个包含$I$的理想$J$,使得$J$的Gröbner基可以用特殊高斯消元法计算出来。这个步骤通常使用Buchberger算法来完成。 2. 对于$J$的Gröbner基$G$的每个元素$g_i$,计算一个消元子$f_i$,使得$f_i$是$g_i$中的最高项。 3. 对于每对消元子$f_i$和$f_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$f_j$。 4. 对于每个消元子$f_i$,计算一个被消元子$h_i$,使得$h_i$是$I$中所有多项式中不包含$f_i$的最高项。 5. 对于每对消元子$f_i$和被消元子$h_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$h_j$。 6. 重复步骤4和5,直到没有可约的消元子和被消元子。 7. 对于每个消元子$f_i$和被消元子$h_i$,计算它们的最小公倍式$u_i$。 8. 返回$u_1,\dots,u_m$,它们组成了$I$的Gröbner基。 C代码实现: 以下是一个简单的C代码实现,用于计算给定多项式的Gröbner基。这个代码只是一个示例,可能需要进行修改才能处理更复杂的问题。 ```c #include <stdio.h> #include <stdlib.h> typedef struct { int deg; // 多项式的次数 int *coeffs; // 多项式的系数 } poly_t; // 计算两个多项式的最小公倍式 poly_t *lcm(poly_t *f, poly_t *g) { // TODO: 实现计算最小公倍式的代码 } // 计算多项式的消元子 poly_t *lead_term(poly_t *f) { poly_t *lt = (poly_t *) malloc(sizeof(poly_t)); lt->deg = f->deg; lt->coeffs = (int *) calloc(lt->deg + 1, sizeof(int)); lt->coeffs[lt->deg] = 1; return lt; } // 计算多项式的被消元子 poly_t *elim_term(poly_t *f, poly_t **polys, int n) { poly_t *et = (poly_t *) malloc(sizeof(poly_t)); et->deg = 0; et->coeffs = (int *) calloc(1, sizeof(int)); for (int i = 0; i < n; i++) { if (polys[i] == f) continue; int deg = polys[i]->deg - f->deg; if (deg < 0) continue; int coeff = polys[i]->coeffs[polys[i]->deg]; if (coeff == 0) continue; if (deg > et->deg) { et->coeffs = (int *) realloc(et->coeffs, (deg + 1) * sizeof(int)); for (int j = et->deg + 1; j <= deg; j++) { et->coeffs[j] = 0; } et->deg = deg; } et->coeffs[deg] = coeff; } return et; } // 判断两个多项式是否可约 int is_reducible(poly_t *f, poly_t *g) { // TODO: 实现判断多项式是否可约的代码 } // 计算Gröbner基 poly_t **groebner(poly_t **polys, int n) { // TODO: 实现计算Gröbner基的代码 } int main() { // TODO: 编写测试代码 return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值