fft(快速傅里叶变换)学习草稿,逆dft证明

本文详细解析了逆离散傅立叶变换(IDFT)的数学推导过程,从最原始的公式出发,通过引入单位复数根进行巧妙转换,最终得出逆DFT的表达形式。文中还解释了如何利用这一变换实现信号处理中的多项式乘法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上最原始的式子(模nn意义下):

ci=j=0iajbij

变形一下:

ci=jkajbk[i+j+k==0](1)ci=∑j∑kaj∗bk∗[−i+j+k==0](1)

考虑怎么判断一个数是否等于0,观察下面的式子:
[p==0]=n1i=0wipn(w)[p==0]=∑i=0n−1wipn(w是单位复数根)

现在要证明它是对的
1.当p=0p=0时,ip=0i∗p=0,所以wip=1wip=1,而总共有nn项,除n后恰好等于1。
2.当p0p≠0时,直接用等比数列求和。
Sn=a11qn1qSn=w01wpn1wpwn=1Sn=0Sn=a1∗1−qn1−q,代数进去Sn=w0∗1−wpn1−wp,由于wn=1,所以Sn=0

得证。

那么把[p==0]=n1i=0wipn[p==0]=∑i=0n−1wipn代入(1)(1)

ci=jkajbk[i+j+k==0]ci=1njkajbkl=0n1wilwjlwklci=1nl=0n1wil(j=0n1ajwjl)(k=0n1bkwkl)ci=∑j∑kaj∗bk∗[−i+j+k==0]ci=1n∑j∑kaj∗bk∑l=0n−1w−il∗wjl∗wklci=1n∑l=0n−1w−il∗(∑j=0n−1aj∗wjl)∗(∑k=0n−1bk∗wkl)

对应到dft上,n1l=0n1j=0ajwjl∑l=0n−1∑j=0n−1aj∗wjln1l=0n1k=0bkwkl∑l=0n−1∑k=0n−1bk∗wkl相当于对a,ba,b数组各做一次dft,而为了最后得到cici还要把a,ba,b对应的点值乘起来,设dl=(n1j=0ajwjl)(n1k=0bkwkl)dl=(∑j=0n−1aj∗wjl)∗(∑k=0n−1bk∗wkl),即
ci=1nl=0n1wildlci=1n∑l=0n−1w−il∗dl

这就是我们熟悉的逆dft!这样就证明了逆dft的由来。%fzr大爷!这里写图片描述
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值