先上最原始的式子(模
n
n
意义下):
变形一下:
考虑怎么判断一个数是否等于0,观察下面的式子:
现在要证明它是对的
1.当 p=0 p = 0 时, i∗p=0 i ∗ p = 0 ,所以 wip=1 w i p = 1 ,而总共有 n n 项,除后恰好等于1。
2.当 p≠0 p ≠ 0 时,直接用等比数列求和。
得证。
那么把
[p==0]=∑n−1i=0wipn
[
p
==
0
]
=
∑
i
=
0
n
−
1
w
i
p
n
代入
(1)
(
1
)
对应到dft上, ∑n−1l=0∑n−1j=0aj∗wjl ∑ l = 0 n − 1 ∑ j = 0 n − 1 a j ∗ w j l 和 ∑n−1l=0∑n−1k=0bk∗wkl ∑ l = 0 n − 1 ∑ k = 0 n − 1 b k ∗ w k l 相当于对 a,b a , b 数组各做一次dft,而为了最后得到 ci c i 还要把 a,b a , b 对应的点值乘起来,设 dl=(∑n−1j=0aj∗wjl)∗(∑n−1k=0bk∗wkl) d l = ( ∑ j = 0 n − 1 a j ∗ w j l ) ∗ ( ∑ k = 0 n − 1 b k ∗ w k l ) ,即
这就是我们熟悉的逆dft!这样就证明了逆dft的由来。%fzr大爷!