fft(快速傅里叶变换)学习草稿,逆dft证明

先上最原始的式子(模 n n 意义下):

ci=j=0iajbij

变形一下:

ci=jkajbk[i+j+k==0](1) c i = ∑ j ∑ k a j ∗ b k ∗ [ − i + j + k == 0 ] ( 1 )

考虑怎么判断一个数是否等于0,观察下面的式子:
[p==0]=n1i=0wipn(w) [ p == 0 ] = ∑ i = 0 n − 1 w i p n ( w 是 单 位 复 数 根 )

现在要证明它是对的
1.当 p=0 p = 0 时, ip=0 i ∗ p = 0 ,所以 wip=1 w i p = 1 ,而总共有 n n 项,除n后恰好等于1。
2.当 p0 p ≠ 0 时,直接用等比数列求和。
Sn=a11qn1qSn=w01wpn1wpwn=1Sn=0 S n = a 1 ∗ 1 − q n 1 − q , 代 数 进 去 S n = w 0 ∗ 1 − w p n 1 − w p , 由 于 w n = 1 , 所 以 S n = 0

得证。

那么把 [p==0]=n1i=0wipn [ p == 0 ] = ∑ i = 0 n − 1 w i p n 代入 (1) ( 1 )

ci=jkajbk[i+j+k==0]ci=1njkajbkl=0n1wilwjlwklci=1nl=0n1wil(j=0n1ajwjl)(k=0n1bkwkl) c i = ∑ j ∑ k a j ∗ b k ∗ [ − i + j + k == 0 ] c i = 1 n ∑ j ∑ k a j ∗ b k ∑ l = 0 n − 1 w − i l ∗ w j l ∗ w k l c i = 1 n ∑ l = 0 n − 1 w − i l ∗ ( ∑ j = 0 n − 1 a j ∗ w j l ) ∗ ( ∑ k = 0 n − 1 b k ∗ w k l )

对应到dft上, n1l=0n1j=0ajwjl ∑ l = 0 n − 1 ∑ j = 0 n − 1 a j ∗ w j l n1l=0n1k=0bkwkl ∑ l = 0 n − 1 ∑ k = 0 n − 1 b k ∗ w k l 相当于对 a,b a , b 数组各做一次dft,而为了最后得到 ci c i 还要把 a,b a , b 对应的点值乘起来,设 dl=(n1j=0ajwjl)(n1k=0bkwkl) d l = ( ∑ j = 0 n − 1 a j ∗ w j l ) ∗ ( ∑ k = 0 n − 1 b k ∗ w k l ) ,即
ci=1nl=0n1wildl c i = 1 n ∑ l = 0 n − 1 w − i l ∗ d l

这就是我们熟悉的逆dft!这样就证明了逆dft的由来。%fzr大爷! 这里写图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值