Electric Fences

原创 2013年12月04日 11:23:20

题意:摘自NOCOW翻译(http://www.nocow.cn/index.php/Translate:USACO/fence3

描述

农夫约翰已经决定建造电网。他已经把他的农田围成一些奇怪的形状,现在必须找出安放电源的最佳位置。

对于每段电网都必须从电源拉出一条电线。电线可以穿过其他电网或者跨过其他电线。电线能够以任意角度铺设,从电源连接到一段电网的任意一点上(也就是,这段电网的端点上或者在其之间的任意一点上)。这里所说的“一段电网”指的是呈一条线段状的电网,并不是连在一起的几段电网。若几段电网连在一起,那么也要分别给这些电网提供电力。

已知所有的 F(1 <= F <= 150)段电网的位置(电网总是和坐标轴平行,并且端点的坐标总是整数,0 <= X,Y <= 100)。你的程序要计算连接电源和每段电网所需的电线的最小总长度,还有电源的最佳坐标。

电源的最佳坐标可能在农夫约翰的农田中的任何一个位置,并不一定是整数。

[编辑]格式

PROGRAM NAME: fence3

INPUT FORMAT

第一行包括 F ——电网的数量。 下面的 F 行每行包括两个 X,Y 对,表示这段电网的两个端点。

(ps:数据中有电网是点的情况,即 68 97 68 97,这貌似与题目叙述不符,请注意 //from Error)(路人甲:貌似照做就行了,不用管,。。。)

OUTPUT FORMAT

只有一行,输出三个浮点数,每个保留1位小数。假定你的电脑的输出库会正确地对小数进行四舍五入。

这三个数是:

电源最佳坐标的 X 值, 电源最佳坐标的 Y 值,和 需要的电线的总长度(要最小)。

[编辑]SAMPLE INPUT (file fence3.in)

3
0 0 0 1
2 0 2 1
0 3 2 3

[编辑]SAMPLE OUTPUT (file fence3.out)

1.0 1.6 3.7


解题思路:

  1. 直接0.01精度搜索必然会爆时间,所以需要逐步提高精度
  2. 首先以step = 10的精度搜索坐标(x, y),找到最小的那些坐标(min_x, min_y),那么全局最小的点的坐标(g_min_x, g_min_y)肯定满足:min_x - step <= g_min_x <= min_x + step,min_y - step <= g_min_y <= min_y + step,也就是以点(min_x, min_y)为中心,2 * step为边长的正方形中
  3. 下一步就是以step = 1的精度在2中得出的范围中搜索,然后逐步提高精度,一直到step = 0.01
  4. 求出step = 0.01中距离最小的点即可

代码

/*
ID: zc.rene1
LANG: C
PROG: fence3
 */

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>

#define MAX 100
#define MAX_DISTANCE 9999999.0

int F;
double fences[150][4];
double global_min_distance = MAX_DISTANCE, global_min_x, global_min_y;

void GetInput(FILE *fin)
{
    int i, j;

    fscanf(fin, "%d", &F);
    for (i=0; i<F; i++)
    {
	for (j=0; j<4; j++)
	{
	    fscanf(fin, "%lf", &fences[i][j]);
	}
    }
}

double DeltaDistance(double x, double y, int index)
{
    double x1 = fences[index][0];
    double y1 = fences[index][1];
    double x2 = fences[index][2];
    double y2 = fences[index][3];

    double ret = 0.0, temp;

    if (x1 > x2)
    {
	temp = x1;
	x1 = x2;
	x2 = temp;
    }
    if (y1 > y2)
    {
	temp = y1;
	y1 = y2;
	y2 = temp;
    }

    if (x < x1)
    {
	ret += ((x1 - x) * (x1 - x));
    }
    if (x > x2)
    {
	ret += ((x - x2) * (x - x2));
    }

    if (y < y1)
    {
	ret += ((y1 - y) * (y1 - y));
    }
    if (y > y2)
    {
	ret += ((y - y2) * (y - y2));
    }

    return sqrt(ret);
}

double GetDistance(double x, double y)
{
    int i;
    double ret = 0.0;

    for (i=0; i<F; i++)
    {
	ret += DeltaDistance(x, y, i);
    }

    return ret;
}

void CalDistance(double min_x, double max_x, double min_y, double max_y, double step)
{
    double x, y, new_step;
    double temp_distance, temp_min_distance = MAX_DISTANCE; 
    double stack[10][2];
    int i, bottom = -1, top = -1;

    for (x=min_x; x<=max_x; x+=step)
    {
	for (y=min_y; y<=max_y; y+=step)
	{
	    temp_distance = GetDistance(x, y);
	    if (temp_distance < temp_min_distance)
	    {
		temp_min_distance = temp_distance;
		top = 0;
		stack[top][0] = x;
		stack[top][1] = y;
	    }
	    else if (temp_distance == temp_min_distance)
	    {
		top++;
		stack[top][0] = x;
		stack[top][1] = y;
	    }
	}
    }

    new_step = step / 10.0;

    if (new_step >= 0.01)
    {
	while (top > bottom)
	{
	    x = stack[top][0];
	    y = stack[top][1];
	    CalDistance(x - step, x + step, y - step, y + step, new_step);
	    top--;
	}
    }
    else
    {
	if (temp_min_distance < global_min_distance)
	{
	    for (i=bottom+1; i<=top; i++)
	    {
		global_min_distance = temp_min_distance;
		global_min_x = stack[i][0];
		global_min_y = stack[i][1];
	    }
	}
    }
}

int main(void)
{
    FILE *fin, *fout;

    fin = fopen("fence3.in", "r");
    fout = fopen("fence3.out", "w");

    GetInput(fin);
    CalDistance(0.0, 100.0, 0.0, 100.0, 10.0);
    fprintf(fout, "%.1lf %.1lf %.1lf\n", global_min_x, global_min_y, global_min_distance);

    return 0;
}







版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

usaco traini 5.2.2 Electric Fences 题解

【序言】这个题目真的是太神了!它适合任何非主流的算法(特别是随机化算法)。从此,我对模拟退火、爬山法等有了更深的了解。 【优化】因为只要保留一位小数,我们可以把它扩大10倍当整数计算,输出时再缩小即可...

USACO Section 5.2 Electric Fences - 有意思的枚举+计算几何

这题一上来首先想到的是能否用数学方法来求得这个点..比如说画一个半径最小的圆使其与所有线段相交或相切…那么圆心就是所求..想法似乎没问题..但怎么来求是毫无头绪~想了良久也没想出用数学的方法如何实现…...
  • kk303
  • kk303
  • 2012-01-28 12:33
  • 1107

桌面图标分类软件Fences的缺点

可能吧在我生活中不能没有的10个软件中写道了Fences, 体验试用后发现些小问题. 在小众的留言里面也看到了很多网友发出的bug, 下面列出了部分解决方案. 特别说明: 测试环境为Windows...

poj2018 Best Cow Fences

#include #include #include #define MAXSIZE 100500 #define sf scanf #define pf printf using namespace...

USACO Riding Fences 欧拉回路

参考: http://www.cppblog.com/Ylemzy/articles/100050.html 注意path数组长度为1025(edge的个数),刚开始弄成501(vertex个数)结...

POJ 2018 Best Cow Fences

Best Cow Fences Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9840   Accepted: ...

GDUFS1162 Fences 坐标离散化

Problem Address:http://cstfs.gdufs.edu.cn:8080/PKU/showproblem?problem_id=1162 周四训练的一道题,当时没有做出来。 当时也...

usaco3.3.1 Riding the Fences

一 原题 Riding the Fences Farmer John owns a large number of fences that must be repaired annually. H...

Memory Barriers/Fences

In this article I'll discuss the most fundamental technique in concurrent programming known as memor...

usaco3.3Riding the Fences输出欧拉通路

以前碰到过判断是否存在欧拉回路(无向图中节点度都为偶数,有向图中入度等于出度)或通路。这题是叫你输出路径,这思想很简单,先找起点,对于一个结点,随便找一个相邻结点走就行,这里还是有递归的。。。/* I...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)