【集成学习|Bagging、Boosting 和 Stacking】三种常见的集成学习算法的联系与区别?以及如何实现?附代码学习

【集成学习|Bagging、Boosting 和 Stacking】三种常见的集成学习算法的联系与区别?以及如何实现?

【集成学习|Bagging、Boosting 和 Stacking】三种常见的集成学习算法的联系与区别?以及如何实现?附代码学习



1.集成学习算法:Bagging、Boosting 和 Stacking

1.1 Bagging(Bootstrap Aggregating)

Bagging 是一种并行集成学习方法,通过从数据集中有放回地随机抽样,生成多个子数据集,并在这些子数据集上训练多个基学习器(通常是弱学习器,比如决策树)。Bagging 的主要思想是通过平均多个模型的预测结果,减少模型的方差,提升预测性能

原理:

  • 1.从原始数据集中随机有放回地抽样,生成多个子数据集。
  • 2.对每个子数据集训练一个基学习器。
  • 3.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值