【集成学习|Bagging、Boosting 和 Stacking】三种常见的集成学习算法的联系与区别?以及如何实现?
【集成学习|Bagging、Boosting 和 Stacking】三种常见的集成学习算法的联系与区别?以及如何实现?附代码学习
文章目录
1.集成学习算法:Bagging、Boosting 和 Stacking
1.1 Bagging(Bootstrap Aggregating)
Bagging 是一种并行集成学习方法,通过从数据集中有放回地随机抽样,生成多个子数据集,并在这些子数据集上训练多个基学习器(通常是弱学习器,比如决策树)。Bagging 的主要思想是通过平均多个模型的预测结果,减少模型的方差,提升预测性能。
原理:
- 1.从原始数据集中随机有放回地抽样,生成多个子数据集。
- 2.对每个子数据集训练一个基学习器。
- 3.