关闭
当前搜索:

谷歌最新AI产品——AutoML Vision,可以自动设计机器学习模型

今天凌晨时分,李飞飞通过一篇博客文章发布了谷歌最新AI产品——AutoML Vision,可以自动设计机器学习模型。我很荣幸地宣布AutoML Vision面世。无需精通机器学习,每个人都能用这款AI产品定制机器学习模型。这是“AI民主化”的重要进展!——李飞飞这个名为Cloud AutoML的宏大项目浮出水面,或标志谷歌发展的战略转型。一直以来面向机器学习人工智能开发者的Google Cloud...
阅读(144) 评论(0)

吴恩达【深度学习工程师】学习笔记(十一)

吴恩达【深度学习工程师】专项课程包含以下五门课程: 1、神经网络和深度学习; 2、改善深层神经网络:超参数调试、正则化以及优化; 3、结构化机器学习项目; 4、卷积神经网络; 5、序列模型。 今天介绍《卷积神经网络》系列第一讲:卷积神经网络 主要内容: 1、计算机视觉 2、边缘检测 3、padding 4、卷积步长 5、cnn示例 计算...
阅读(57) 评论(0)

如何高效进行大规模分类?

大规模分类技术对人脸识别等任务的实际应用有着切实的价值。香港中文大学和商汤科技近日公布的一篇 AAAI 2018 论文介绍了一种旨在高效解决大规模分类问题的方法。机器之心对该研究成果进行了编译介绍。 近些年来,在深度学习的发展和数据集的爆发式增长的推动下,人工智能领域已经见证了一波突破浪潮(Shakirov 2016)。伴随着这一趋势,涉及极大数量类别的大规模分类变成了一项重...
阅读(52) 评论(0)

山世光:计算机视觉技术现状展望和产业化

深度学习在计算机视觉领域,解决了或者推动了一大类非线性的映射函数学习的问题。但从落地角度来看,依赖于有标注大数据的深度学习也还存在非常多问题。...
阅读(317) 评论(0)

致研究者:2018 AI 研究趋势

Alex Honchar在Medium发文,从研究者的角度分享机器学习明年发展的走向。...
阅读(183) 评论(0)

CTPN - 自然场景文本检测

文本检测,先用CNN得到深度特征,然后用固定宽度的anchor来检测text proposal(文本线的一部分),并把同一行anchor对应的特征串成序列,输入到RNN中,最后用全连接层来分类或回归,并将正确的text proposal进行合并成文本线。...
阅读(277) 评论(0)

如何用深度学习处理结构化数据?

将神经网络用于结构化数据任务...
阅读(193) 评论(0)

吴恩达【深度学习工程师】学习笔记(十)

1、进行错误分析; 2、、快速构建系统并迭代; 3、在不同的数据分布上训练和测试; 4、迁移学习; 5、多任务学习; 6、end-to-end学习...
阅读(131) 评论(0)

谷歌开源TFGAN:轻量级生成对抗网络工具库

谷歌最近开源了 TFGAN,一个实现轻松训练和评估 GAN 的轻量级库。...
阅读(375) 评论(0)

李飞飞在谷歌开发者大会宣布谷歌AI中国中心正式成立

在今天上海开幕的谷歌开发者大会上,谷歌云人工智能与机器学习首席科学家李飞飞宣布谷歌 AI 中国中心正式成立,该中心由李飞飞和 Google Cloud 研发负责人李佳博士共同领导。...
阅读(271) 评论(0)

R-FCN每秒30帧实时检测3000类物体,马里兰大学Larry Davis组最新目标检测工作

R-FCN-3000在ImageNet检测数据集上获得34.9%的mAP,在每秒处理30帧图像的同时,可以以18%的优势超过YOLO-9000。...
阅读(700) 评论(0)

Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测

近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案。他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验。...
阅读(155) 评论(0)

AlphaZero炼成最强通用棋类AI,DeepMind强化学习算法8小时完爆人类棋类游戏

由于是通用棋类AI,因此去掉了代表围棋的英文“Go”,没有使用人类知识,从零开始训练,所以用Zero,两相结合得到“AlphaZero”,...
阅读(949) 评论(0)

吴恩达【深度学习工程师】学习笔记(九)

1、使用ML策略; 2、评估指标; 3、Train/Dev/Test数据集; 4、改变评价标准; 5、人类水平表现...
阅读(161) 评论(0)

Hinton提出泛化更优的「软决策树」:可解释DNN具体决策

Geoffrey Hinton 等人发表 arXiv 论文提出「软决策树」(Soft Decision Tree)。并且通过层级决策模型把 DNN 所习得的知识表达出来,具体决策解释容易很多。这最终缓解了泛化能力与可解释性之间的张力。...
阅读(275) 评论(0)

【计算机视觉这一年】万字长文盘点近百篇代表论文、应用和市场

The M Tank发布了一份对计算机视觉领域最近一年进展的报告《A Year in Computer Vision》...
阅读(518) 评论(0)

R-FCN: Object Detection via Region-based Fully Convolutional Networks

R-FCN是在Faster R-CNN的框架上进行改造,第一,把base的VGG16换车了ResNet,第二,把Fast R-CNN换成了先用卷积做prediction,再进行ROI pooling。...
阅读(186) 评论(0)

旷视&清华大学提出新型两步检测器Light-Head R-CNN

近日,来自旷视和清华的研究者提出一种新型两步检测器 Light-Head R-CNN,改变两步检测器头重脚轻(heavy-head)的设计,实现速度和准确率的双重突破。...
阅读(1257) 评论(1)

Titan XP值不值?一文教你如何挑选深度学习GPU

1、为什么深度学习需要使用 GPU ? 2、GPU 的哪种性能指标最为重要 ? 3、选购 GPU 时有哪些坑需要避免 ?...
阅读(316) 评论(0)

吴恩达【深度学习工程师】学习笔记(八)

1、超参数; 2、正则化网络; 3、Softmax回归; 4、程序框架Tensorflow。...
阅读(1370) 评论(0)
234条 共12页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:242354次
    • 积分:4225
    • 等级:
    • 排名:第8401名
    • 原创:105篇
    • 转载:122篇
    • 译文:7篇
    • 评论:63条
    最新评论