问题1:给定一个整数N,那么N的阶乘N!末尾有多少个0呢?例如:N=10,N!=3 628 800,N!的末尾有两个0。
思路:
这个主要是判断各个数字中5的个数,因为5和偶数相乘以后可以得到10,相当于在后面添加一个0。
问题2:求N!的二进制表示中最低位1的位置
分析与解法:
乍一看,似乎,问题二与问题一没什么关系。然而,我们换一个角度思考,二进制中最低位1后面肯定是0,那么这里求最低位1的位置,即为求最低位1后面0的个数,而这,就和问题一是一样一样的,只不过一个是十进制表,一个是二进制表示。这里,所有小于N的数中,2的倍数都贡献一个0,4的倍数再贡献一个0,以此类推。
最关键:由于二进制表示其实是以2为基的表示,每出现一个2,末尾才会有一个0。所以只要找到N!中因子2的个数。
引申题目:
给定整数n,判断它是否为2的方幂
(解答提示:n>0&&((n&(n-1) )==0))。