高斯模糊实现小结

博客详细介绍了高斯模糊的原理,包括使用高斯模板平滑图像、二维高斯模糊函数及其改进方法。通过比较不同模糊函数的性能,强调了高斯模糊的可分离性和在图像处理中的优势。并提供了代码链接以供参考。
摘要由CSDN通过智能技术生成

注:博客中图表的大小难以调整,导致阅读不便,这里有其pdf版本:高斯模糊实现小结.pdf

广告:如果科研累了,静下心来读一本好书吧:《琅琊榜》

 

高斯模糊是一种图像滤波器,它使用正态分布(高斯函数)计算模糊模板,并使用该模板与原图像做卷积运算,达到模糊图像的目的。

N维空间正态分布方程为:

其中,σ是正态分布的标准差,σ值越大,图像越模糊(平滑)r为模糊半径,模糊半径是指模板元素到模板中心的距离。如二维模板大小为m*n,则模板上的元素(x,y)对应的高斯计算公式为:

在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆。分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。

理论上来讲,图像中每点的分布都不为零,这也就是说每个像素的计算都需要包含整幅图像。在实际应用中,在计算高斯函数的离散近似时,在大概3σ距离之外的像素都可以看作不起作用,这些像素的计算也就可以忽略。通常,图像处理程序只需要计算(6σ+1)*(6σ+1)的矩阵就可以保证相关像素影响。

1、使用给定高斯模板平滑图像函数

σ=0.8408964277列高斯模糊矩阵为:

现使用该模板对源图像做模糊处理,其函数如下:

//高斯平滑
//未使用sigma,边缘无处理
void GaussianTemplateSmooth(const Mat &src, Mat &dst, double sigma)
{
	//高斯模板(7*7),sigma = 0.84089642,归一化后得到
	static const double gaussianTemplate[7][7] = 
	{
		{0.00000067, 0.00002292, 0.00019117, 0.00038771, 0.00019117, 0.00002292, 0.00000067},
		{0.00002292, 0.00078633, 0.00655965, 0.01330373, 0.00655965, 0.00078633, 0.00002292},
		{0.00019117, 0.00655965, 0.05472157, 0.11098164, 0.05472157, 0.00655965, 0.00019117},
		{0.00038771, 0.01330373, 0.11098164, 0.22508352, 0.11098164, 0.01330373, 0.00038771},
		{0.00019117, 0.00655965, 0.05472157, 0.11098164, 0.05472157, 0.00655965, 0.00019117},
		{0.00002292, 0.00078633, 0.00655965, 0.01330373, 0.00655965, 0.00078633, 0.00002292},
		{0.00000067, 0.00002292, 0.00019117, 0.00038771, 0.00019117, 0.00002292, 0.00000067}
	};

	dst.create(src.size(), src.type());
	uchar* srcData = src.data;
	uchar* dstData = dst.data;

	for(int j = 0; j < src.cols-7; j++)
	{
		for(int i =
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值