poj1458 Common Subsequence (dp,最长公共子序列)

原创 2016年06月01日 19:06:46

题目链接:

http://poj.org/problem?id=1458


Common Subsequence
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 46650   Accepted: 19171

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2
0

Source


题意:

给你2个字符串序列,求两个字符串的最大公共子序列,当然要保证字符之间的相对顺序不发生改变解题思路:

解题思路:

假设第一个字符串长度为len1,第二个字符串长度为len2。

若我们用数组dp[i][j]表示 当第一个字符串长度为 i ,第二个字符串长度为 j的时候的最长公共子序列长度,则所求答案为dp[len1][len2]
那么要怎么从其他状态转移过来呢,他的前一个状态可能是 dp[i-1][j-1],可能是dp[i-1][j] ,也可能是dp[i][j-1]。

若第一个字符串第 i 个字符与 第二个字符串第 j 个字符的是相同的,那么dp[i][j] 就是 dp[i-1][j-1] +1了。

若不同,只要在 dp[i][j-1],dp[i-1][j-1],dp[i-1][j] 3个状态即可。


AC代码如下:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<set>
#include<cmath>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
const int maxn  = 1010;
char str1[maxn];
char str2[maxn];
int dp[maxn][maxn];
int main()
{
    while(~scanf("%s%s",str1,str2))
    {
        int len1 = strlen(str1);
        int len2 = strlen(str2);
        memset(dp,0,sizeof(dp));
        for(int i = 0 ; i < len1; i++)
            for(int j = 0; j < len2; j++)
            {
                dp[i+1][j+1] = dp[i][j];
                if(str1[i]==str2[j])
                    dp[i+1][j+1] = dp[i][j] + 1;
                else
                    dp[i+1][j+1] = max(dp[i+1][j],dp[i][j+1]);
            }
        cout << dp[len1][len2]<<endl;
    }

    return 0 ;
}








版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ--1458:Common Subsequence (DP求最长公共子序列)

1. 题目源地址:http://poj.org/problem?id=1458 2. 基本题意: 给出两个序列,求出最长子序列的长度并输出。经典的动态规划求解,DP方程如下:

POJ 1458 && HDU 1159 Common Subsequence (最長公共子序列)dp

鏈接: http://poj.org/problem?id=1458 Description: A subsequence of a given sequence is the given se...

动态规划总结五 poj 1458 Common Subsequence(最长公共子序列)

Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissio...

HDOJ 1159(POJ 1458)Common Subsequence (最长公共子序列 LCS)

最大公共子序列长度 (LCS)Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32...

POJ 1458 Common Subsequence(最长公共子序列问题)

Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39128   Accept...

HDU 1159 & POJ 1458 Common Subsequence(LCS 最长公共子序列O(nlogn))

HDU 1159 & POJ 1458 Common Subsequence(LCS 最长公共子序列0(nlogn))

poj1458--Common Subsequence--最长公共子序列LCS

最最基础的LCS问题~~~ 关于LCS有很多很多的解释: 觉得这四个说的蛮好的:觉得这四个说的蛮好的: http://blog.chinaunix.net/uid-26548237-id-33...

POJ 1458 Common Subsequence(最长公共子序列LCS)

POJ 1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串...

poj1458-Common Subsequence(最长公共子序列,LCS)

Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4358...

【解题报告】uva10405_Longest Common Subsequence(最长公共子序列, dp)

Problem C: Longest Common Subsequence Sequence 1:                 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)