c# 递归算法

 1)1、1、2、3、5、8.......用递归算法求第30位数的值?

  首先我们可以发现从第3位数起后一位数等于前两位数值之和,即:x=(x-1)+(x-2),x>2;

  这里需要不断的相加,第一时刻就会想到循环处理,我们尝试用数组去装载这些数值,即:

  int[] a=new int[30];

 a[0]=1;

 a[1]=1;

 for(int i=2;i<30;i++)

{

    a[i]=a[i-1]+a[i-2];

}

求a[29]的值即为第30位数的值。

递归该如何处理呢?同样定义函数

fun(n)

{

    return fun(n-1)+fun(n-2)//n为第几位数,第n位数返回值等于第n-1位数的值与第n-2位数的值之和

}

只有当n>2为这种情况,就可以做个判断

fun(n)

{

     if(n==1 || n==2)

          return 1;

     else

          return fun(n-1)+fun(n-2);

}

求fun(30);

 

网站看到别人的分析也不错:

【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
斐波那契数列为:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (当n>1时)。
写成递归函数有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。

 

其他递归解题:

求1+2+3+4+5+....+n的值

Fun(n)=n+Fun(n-1)

n=1时为1

Fun(n)

{

     if(n==1)

       return 1;

     else

      return n+Fun(n-1);

}

 

有两个整数型数组,从小到大排列,编写一个算法将其合并到一个数组中,并从小到大排列

    public void Fun()
    {
        int[] a = { 1, 3, 5, 7, 9, 10 };
        int[] b = { 2, 4, 6, 8, 11, 12, 15 };

        int[] c = new int[a.Length + b.Length];
        ArrayList al=new ArrayList();
        int i=0;
        int j=0;
        while (i <= a.Length - 1 && j <= b.Length - 1)
        {  //循环比较把小的放到前面
            if (a[i] < b[j])
            {
                al.Add(a[i++]);
            }
            else
            {
                al.Add(b[j++]);
            }
        }

        //两个数组的长度不一样,必有个数组没比较完
        while (i <= a.Length - 1)//添加a中剩下的
        {
            al.Add(a[i++]);
        }
        while (j <= b.Length - 1)//添加b中剩下的

        {
            al.Add(b[j++]);
        }

        for (int ii = 0; ii <= c.Length-1 ; ii++)
        {
            c[ii] = (int)al[ii];
        }
    }

  

### C# 中的递归算法实现与用法 递归是一种函数调用自己的编程技巧,广泛应用于解决可以分解为相似子问题的任务。在 C# 中,递归可以通过定义一个函数并让其内部调用来实现。 #### 示例1:阶乘计算的递归实现 阶乘是一个典型的递归应用场景。以下代码展示了一个简单的递归函数来计算 `n!`: ```csharp public long Factorial(long n) { if (n == 0 || n == 1) return 1; // 基本情况 return n * Factorial(n - 1); // 递归调用 } ``` 在此示例中,当输入值达到基本情况(即 `n == 0` 或 `n == 1`),递归停止;否则继续调用自身以缩小问题规模[^1]。 --- #### 示例2:汉诺塔问题的递归解决方案 汉诺塔问题是另一个经典递归案例。它涉及将一组盘片从一根柱子移动到另一根柱子上,遵循一定规则。下面是它的 C# 实现: ```csharp public void HanoiTower(int n, string fromPole, string toPole, string auxPole) { if (n == 1) { Console.WriteLine($"Move disk 1 from {fromPole} to {toPole}"); return; } HanoiTower(n - 1, fromPole, auxPole, toPole); // 将前 n-1 个盘移到辅助柱 Console.WriteLine($"Move disk {n} from {fromPole} to {toPole}"); HanoiTower(n - 1, auxPole, toPole, fromPole); // 将前 n-1 个盘从辅助柱移至目标柱 } ``` 这个程序清晰地展现了如何通过分治策略解决问题,并且每次都将原问题拆分为更小的部分直至可以直接求解的程度[^3]。 --- #### 示例3:插入排序的递归实现 除了传统的迭代方法外,还可以采用递归来完成一些常见排序算法如插入排序。这里给出一段基于递归形式的插入排序代码片段: ```csharp public static void InsertionSortRecursive(int[] arr, int n) { if (n <= 1) return; // 边界条件 InsertionSortRecursive(arr, n - 1); // 排序前面 n-1 个元素 int last = arr[n - 1]; int j = n - 2; while (j >= 0 && arr[j] > last) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = last; } ``` 此版本先假设除最后一个未处理项之外的所有其他项均已按顺序排列好,接着将其放入合适位置从而保持整个列表有序状态[^2]。 --- ### 总结 上述几个例子充分说明了递归的强大之处及其适用范围涵盖了诸如数学运算、组合游戏以及各种排序任务等多个方面。尽管如此,在实际运用过程中也需要注意避免因过度嵌套而导致栈溢出等问题发生。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值