- 博客(1685)
- 资源 (70)
- 收藏
- 关注
原创 机器学习模型评估完全指南:从理论到实践
可靠的模型评估是机器学习项目成功的基石。严格分离:训练集、验证集、测试集各司其职方法选择:根据数据量选择合适评估方法基准设置:用简单基准验证方法的有效性注意事项:警惕数据泄露和时间序列特性持续改进:通过错误分析指导模型优化掌握这些评估技巧,你就能更自信地开发出真正具有泛化能力的机器学习模型!
2025-11-14 08:34:21
362
原创 机器学习基础(评估机器学习模型)
你只能控制可以观察到的东西。因为你的目标是开发出能够成功泛化到新数据的模型,所以能够可靠地衡量模型泛化能力是至关重要的。本节将正式介绍评估机器学习模型的各种方法,其中大多数方法在第4 章中出现过。
2025-11-14 08:33:45
317
原创 NET 程序执行内幕:从 IL 到本地代码的奇妙之旅
CLR 的 JIT 编译机制代表了运行时编译技术的成熟实践。它通过在灵活性、性能与开发效率之间取得的精妙平衡,为现代应用程序开发提供了强大基础。理解这一内在机制,有助于开发人员编写更高效、更可靠的 .NET 应用程序。思考题:在你的开发经历中,是否遇到过需要深入理解 CLR 内部机制才能解决的性能问题?欢迎在评论区分享你的经验!
2025-11-14 08:33:15
600
原创 CLR的执行模型(执行程序集的代码)
debug:full开关,而“发布”(Release)配置指定的是/optimize+和/debug:pdbonly开关。令,还可在控制流程指令〔比如for,while,do,if,else,try,catch和finally语句块)上。除此之外,只有在指定/debug(+/full/pdbonly)开关的前提下,编译器才会生成一个Program。编译成本地代码时,编译器对执行环境的认识比非托管编译器更加深刻。然后,JITCompiler会在定义(该类型的)程序集的元数据中查找被调用的方法的IL。
2025-11-14 08:32:38
398
原创 泛化:机器学习的目标
机器学习的目标是实现良好的泛化,而不仅仅是优化训练数据上的性能。理解欠拟合、过拟合以及深度学习泛化的本质,对于构建有效的机器学习模型至关重要。通过密集采样、特征工程和适当的正则化,我们可以提高模型的泛化能力,使其在真实世界中表现更好。
2025-11-13 08:41:30
210
原创 机器学习基础(泛化:机器学习的目标)
在第4 章介绍的3 个例子中(影评分类、新闻分类和房价预测),我们将数据划分为训练集、验证集和测试集。不在同样的训练数据上评估模型的原因显而易见:仅仅几轮过后,模型在前所未见的数据上的性能就开始与训练数据上的性能发生偏离,后者总是随着训练而提高。模型开始过拟合。所有机器学习问题都存在过拟合。机器学习的根本问题在于优化与泛化之间的矛盾。(optimization)是指调节模型使其在训练数据上得到最佳性能的过程(对应机器学习中的学习),(generalization)则是指训。
2025-11-13 08:40:59
227
原创 NET程序集运行机制详解:从编译到CLR加载
每个.NET程序集可以是可执行应用程序或包含类型的DLL,这些代码最终都由公共语言运行时(CLR)管理执行。这意味着目标机器必须安装.NET Framework。Microsoft提供了免费的重分发包,允许将.NET Framework分发给用户。
2025-11-13 08:40:26
211
原创 CLR的执行模型(加载公共语言运行时)
版本,MSCorEE.dlI的x86版本在C:\Windows\SysWow64目录中,64位版本(x64或者IA64)运行64位Windows的x64机器上使用,或者只能在运行位Windows的lntelltanium机。的地址窄间中加载MSCorEE.dll的x86,x64或64版本。如果是Windows的x86版本,package),允许将.NETFramework免费分发并安装到你的用户的计算机上。32位Windows上运行,还能在64位Windows的x64和1A64版本上运行!
2025-11-13 08:39:55
302
原创 预测房价:标量回归问题实战指南
回归问题回归:预测连续值(如房价、温度)分类:预测离散标签(如垃圾邮件/非垃圾邮件)⚠️注意:不要将回归问题与logistic回归混淆。logistic回归实际上是分类算法!
2025-11-12 08:41:39
672
原创 神经网络入门:分类与回归(预测房价:标量回归问题示例)
模型的最后一层只有一个单元且没有激活,它是一个线性层。这是标量回归(标量回归是预测单一连续值的回归)的典型设置。添加激活函数将限制输出范围。如果向最后一层添加sigmoid 激活函数,那么模型只能学会预测0 到1 的值。这里最后一层是纯线性的,所以模型可以学会预测任意范围的值。注意,我们编译模型用的是mse 损失函数,即均方误差(mean squared error,MSE),预测值与目标值之差的平方。这是回归问题常用的损失函数。
2025-11-12 08:41:07
490
原创 理解CLR程序集:模块的逻辑分组与自描述特性
在CLR的世界中,程序集(assembly)是一个至关重要的概念,对于初学者来说可能不太容易理解。简单来说,程序集是一个或多个模块/资源文件的逻辑性分组,是代码重用、安全控制和版本管理的最小单位。
2025-11-12 08:40:29
372
原创 CLR的执行模型(将托管模块合并成程序集)
或工具的选择,既可以生成单文件程序集,也可以生成多文件程序集。默认情况下,编译器实际会把生成的托管模块转换成程序集。模块,没有资源(或数据)文件,那么程序集就是托管模块,而且在生成过程中不需要采取。在程序集的模块中,还包含与引用的程序集有关的信息(包括它们的版本号)。这些表描述了构成程序集的文件,由程序集中的文件实现的公开导出的类型六。清单的一个托管模块。对于一个可重用的、可保护的、可版本控制的组件,程序集把它的逻辑表示和物理表示区。少用到的类型或资源放到单独的文件中,并把这些文件作为程序集的一部分。
2025-11-12 08:39:57
197
原创 新闻分类实战:用神经网络将新闻精准分到46个类别_2025-11-11
训练样本:8,982个测试样本:2,246个主题数量:46个输出层设计:N个类别需要N维输出层,使用softmax激活损失函数选择:分类问题使用交叉熵损失标签编码:one-hot编码或整数标签对应不同的损失函数层维度:中间层维度不应小于输出类别数,避免信息瓶颈过拟合监控:及时停止训练防止过拟合。
2025-11-11 13:14:12
613
原创 神经网络入门:分类与回归(新闻分类:多分类问题示例)
4.1 节介绍了如何用密集连接神经网络将向量输入划分为两个互斥的类别。但如果类别不止两个,要怎么做呢?本节将构建一个模型,把路透社新闻划分到46 个互斥的主题中。由于有多个类别,因此这是一个多分类(multiclass classification)问题。由于每个数据点只能划分到一个类别中,因此更具体地说,这是一个单标签、多分类(single-label, multiclass classification)问题。如果每个数据点可。
2025-11-11 08:39:35
629
原创 NET开发入门:从代码到托管模块的编译过程
NET的跨语言能力和统一的运行时环境,让开发者能够专注于用最合适的语言表达业务逻辑,而不必担心底层执行细节。无论你选择哪种语言,最终都能在CLR的统一管理下协同工作,这真正实现了“语言平等,各擅胜场”的开发理念。通过理解从源代码到托管模块的完整编译过程,开发者可以更好地利用.NET平台的强大能力,构建高效、安全的应用程序。
2025-11-11 08:38:33
377
原创 CLR的执行模型(将源代码编译成托管模块)
例如,“运行时”使用异常来报告错误:因此,面向“运行时”的任何语言都能通过异常来报告错误。另外,“运行时”允许创建线程,ML,Mondrian,Oberon,Pascal,PerI,Php,Pr010g,RPG,Scheme,Smalltalk和Tcl/Tk。Microsoft已创建好了几个面向“运行时”的语言编译器,其中包括:C++/CLI、C#(发音是。Microsoft的C++编译器默认生成包含非托管(本地)代码的EXE/DLL模块,并在运行时操纵。建了自己的编译器,它们也能面向CLR来生成代码。
2025-11-11 08:37:54
791
原创 影评情感分析:基于IMDB的二分类实战教程
IMDB数据集包含来自互联网电影数据库的50,000条严重两极分化的评论,其中25,000条用于训练,25,000条用于测试。数据集已经平衡,即训练集和测试集各包含50%的正面评论和50%的负面评论。该数据集由斯坦福大学于2011年发布,已成为情感分析的基准数据集。文本数据需要预处理才能输入神经网络,multi-hot编码是常用方法之一带有ReLU激活函数的Dense层堆叠可以解决许多分类问题二分类问题的最后一层应使用sigmoid激活函数和1个单元交叉熵损失函数适合二分类问题。
2025-11-10 13:05:30
500
原创 神经网络入门:分类与回归(影评分类:二分类问题示例)
)传入每个Dense 层的第一个参数是该层的单元(unit)个数,即该层表示空间的维数。第216 个单元对应的权重矩阵W 的形状为(input_dimension, 16),与W 做点积相当于把输入数据投影到16 维表示空间中(然后再加上偏置向量b 并应用relu 运算)。你可以将表示空间的维度直观理解为“模型学习内部表示时所拥有的自由度”。单元越多(表示空间的维度越高),模型就能学到更加复杂的表示,但模型的计算代价也变得更大,并可能导致学到不必要的模式。
2025-11-10 13:04:56
411
原创 神经网络剖析:掌握Keras核心API的完整指南
层是基础:理解如何创建和使用自定义层形状推断:Keras自动处理层间形状兼容性正确配置:选择合适的损失函数、优化器和指标验证监控:始终使用验证数据监控泛化性能批量预测:使用predict()进行高效推断掌握这些Keras核心概念,你就为构建更复杂的深度学习模型奠定了坚实基础。记住,选择合适的网络架构更像是一门艺术,需要通过实践来培养直觉。
2025-11-10 08:33:51
277
原创 Python Keras 和TensorFlow 入门(T神经网络剖析:了解核心Keras API)
神经网络的基本数据结构是,我们在第2 章中了解过。层是一个数据处理模块,它接收一个或多个张量作为输入,并输出一个或多个张量。有些层是无状态的,但大多数层具有状态,即层的。权重是利用随机梯度下降学到的一个或多个张量,其中包含神经网络的不同类型的层适用于不同的张量格式和不同类型的数据处理。例如,简单的向量数据存储在形状为(samples, features) 的2 阶张量中,通常用也叫(fully connected layer)或。
2025-11-10 08:33:21
400
原创 使用PLINQ实现Map_Reduce模式:让大数据处理在.NET中飞起来
Map阶段:将输入数据转换为键值对Shuffle阶段:按键对数据进行分组Reduce阶段:对分组后的数据进行聚合计算通过PLINQ实现Map/Reduce模式,我们获得了一个强大而灵活的工具,可以在.NET环境中高效处理大规模数据。这种实现不仅保持了代码的简洁性和可读性,还充分利用了现代硬件的并行处理能力。无论你是处理文本分析、日志处理还是其他数据密集型任务,这个模式都能显著提升你的开发效率和程序性能。欢迎关注我的微信公众号获取更多.NET和并行编程的实用技巧!
2025-11-10 08:32:46
344
原创 TensorFlow入门指南:从张量到线性分类器
张量和变量的基础操作TensorFlow数学运算的急切执行特性计算梯度的方法从零实现机器学习模型的完整流程定义模型 → 计算损失 → 梯度下降优化。这是理解更复杂神经网络的基础。
2025-11-07 08:36:36
233
原创 Python Keras 和TensorFlow 入门(TensorFlow 入门)
前两章讲过,训练神经网络主要围绕以下概念进行。首先是低阶张量操作。这是所有现代机器学习的底层架构,可以转化为 TensorFlow API。然后是高阶深度学习概念。这可以转化为 Keras API。,多层可以构成模型。,它定义了用于学习的反馈信号。,它决定学习过程如何进行。,比如精度。,执行小批量梯度随机下降。在第2 章中,你已经初步接触了TensorFlow 和Keras 的一些API,并使用了TensorFlow 的Variable 类、matmul 运算和GradientTape。
2025-11-07 08:35:57
759
原创 并行管道模式实战:从BlockingCollection到TPL Dataflow
想象一条汽车装配流水线:当第一个工位完成底盘安装后,车辆就可以移动到第二个工位安装引擎,而此时第一工位已经在处理下一辆车的底盘了。这种"流水作业"就是并行管道的精髓——不同阶段可以并行处理不同的数据项。// 缓冲块 - 接收初始数据});// 转换块1 - 整数转小数result});// 转换块2 - 小数转字符串n--";result});// 动作块 - 输出结果s");});BlockingCollection方案。
2025-11-07 08:35:19
814
原创 C# 并行编程模式(使用BlockingCollection实现并行管道)
本节将描述如何使用标准的BlockingCollection数据结构实现一个生产者/消费者模式的特定场景。该特定场景被称为并行管道。运行结果。
2025-11-07 08:34:46
452
原创 TensorFlow 与 Keras:深度学习的双剑合璧
TensorFlow 与 Keras 的组合为深度学习开发者提供了从入门到专家的完整路径。无论你是刚开始学习的新手,还是需要部署大规模生产系统的专家,这个技术组合都能满足你的需求,真正实现了"易学易用,功能强大"的理想目标。
2025-11-06 08:42:22
591
原创 Python Keras 和TensorFlow 入门(TensorFlow 简介)
Keras 是一个用Python 编写的深度学习API,它构建于TensorFlow 之上,可以方便地定义和训练任意类型的深度学习模型。Keras 最初是为研究而开发的,其目的是快速进行深度学习实验。通过TensorFlow,Keras 可以在不同类型的硬件上运行(见图3-1),包括GPU、TPU 和普通CPU,还可以无缝扩展到上千台机器上。Keras 以重视开发者体验而闻名,它是为人类设计的API,而非为机器设计。它遵循减少认。
2025-11-06 08:41:51
790
原创 并行编程中的经典模式:实现惰性求值的共享状态
避免共享状态:尽可能在设计时避免使用共享状态双重锁定模式:传统的线程安全惰性初始化方案:.NET框架提供的辅助类,性能较好Lazy:最方便和推荐的方式,提供了完整的线程安全惰性求值功能无锁方式:当构造函数是线程安全时可以考虑使用在实际开发中,推荐优先使用Lazy<T>类,它让代码更简洁且不易出错。只有在性能要求极高的场景下,才需要考虑手动实现双重锁定模式。欢迎关注我的微信公众号,获取更多编程技巧和深度解析!
2025-11-06 08:41:17
357
原创 C# 并行编程模式(实现惰性求值的共享状态)
编程中的模式是指针对既定问题的具体的标准的方案。通常,编程模式是人们总结经验的结果,即分析常见的问题,并对这些问题提供方案。由于并行编程已经存在了很长一段时间,有很多不同的模式来编写并行的应用程序甚至有特殊的编程语言更加容易地编写特定并行算法。然而,这正是事情变得日益复杂的源头。在本书中,我将提供一个起点从而帮助你能够进一步学习并行编程我们将回顾非常基础的但是非常有用的模式,这对于解决异步编程的很多常见的方案很有帮助。首先是关于在多线程中使用共享状态的对象。
2025-11-06 08:40:46
325
原创 从零实现神经网络:深入理解深度学习本质
Xavier初始化权重,提高训练稳定性# 零初始化偏置# 前向传播:output = activation(W @ input + b)@property。通过从零实现神经网络,我们揭开了深度学习的神秘面纱。虽然实际应用中我们通常使用高级框架,但这种底层理解让我们能够更好地使用这些工具,并在遇到问题时知道如何解决。深度学习的核心思想其实很简单:通过大量的简单变换(层)组合成复杂的函数,然后通过梯度下降不断优化这个函数的参数,使其能够从数据中学习到有用的模式。
2025-11-05 08:39:52
391
原创 Python 神经网络的数学基础(回顾第一个例子)
在本章开始时,它是一个神奇的黑盒子,现在已经变成一幅更清晰的图,如图2-26 所示:模型由许多层链接在一起组成,并将输入数据映射为预测值。随后,损失函数将这些预测值与目标值进行比较,得到一个损失值,用于衡量模型预测值与预期结果之间的匹配程度。优化器将利用这个损失值来更新模型权重。我们来回顾本章的第一个例子,并根据前面学到的内容来重新审视其中每段代码。下面是输入数据。现在你明白,输入图像保存在float32 类型的NumPy 张量中,其形状分别为(60000,
2025-11-05 08:39:20
984
原创 异步编程实践:文件操作、数据库与WCF服务
我注意到您提供的代码实际上是关于异步文件操作的,但标题和描述提到了数据库和WCF服务。让我为您整理一篇关于异步操作的微信公众号文章,包含正确的代码示例。
2025-11-05 08:38:43
256
原创 神经网络的“引擎”:基于梯度的优化
在这个表达式中,和是该层的(或称),分别对应属性kernel和bias。这些权重包含模型从训练数据中学到的信息。
2025-11-04 08:38:19
442
原创 Python 神经网络的数学基础(神经网络的“引擎”:基于梯度的优化)
假设有一个光滑的连续函数f(x) = y,将一个数字x 映射到另一个数字y。我们以图2-15 所示的函数为例。由于函数是连续的,因此x 的微小变化只会导致y 的微小变化——这就是函数连续性(continuity)的直观解释。假设x增加了一个很小的因子epsilon_x,这导致y 发生了很小的变化epsilon_y,如图2-16 所示。此外,由于函数是光滑的(意思是,函数曲线没有任何突变的角度),因此在某个点p 附近,
2025-11-04 08:37:28
1024
原创 C#异步文件操作与HTTP服务器实战
异步文件I/O选择明确使用确保真正的异步I/O优先使用等简化API,代码更简洁HTTP服务器特点使用异步接收请求每个请求独立处理,不会阻塞线程池线程响应生成完全异步性能优势异步操作避免线程阻塞,提高并发处理能力适合I/O密集型操作,如文件读写、网络请求等注意事项异步删除文件需要Task.Run模拟资源释放要使用using语句或正确调用Dispose这种异步编程模式在现代C#应用中非常重要,能够显著提升应用程序的响应性和吞吐量。欢迎关注我的微信公众号,获取更多C#和.NET技术干货。
2025-11-04 08:36:34
379
原创 C# 使用Rx创建异步操作:简化异步编程的利器
Reactive Extensions(Rx)是一个用于编写异步和基于事件的程序的库。它使用可观察序列(Observable sequences)和LINQ风格的查询操作符,让异步编程变得更加直观和强大。Reactive Extensions为C#异步编程带来了革命性的改进。通过将各种异步模式统一为Observable接口,Rx让复杂的异步代码变得更加简洁、可读和可维护。无论你是处理单个异步操作,还是需要组合多个异步数据流,Rx都提供了强大而优雅的解决方案。
2025-11-03 08:37:55
376
TossDisplayForm.rar
2021-01-26
FilePathCopy.rar
2021-01-27
DynamicallyDisplayMenusWithTreeLists.rar
2021-01-22
FocusChangeColor.rar
2021-01-22
C# 指定时间可具体到某个时间对日志文件进行删除
2023-11-22
C# WinForm 读取多张图片、缩放、平移,缩放后可恢复原图
2022-11-05
C# textbox输入数字,也可以软键盘输入
2022-10-12
C# button textbox 控件实现功能输入数字
2022-10-07
ImageThumbnail.rar
2021-02-03
ChineseValidateCode.rar
2021-01-30
FileSizeProgress.rar
2021-01-29
APopoverShowsProgress.rar
2021-01-29
CopyDataGridDataByImitatingExcel.rar
2021-01-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅