关闭
当前搜索:

关于computer vision的会议及vision guys-机器学习与视觉大牛族谱

原文地址:http://aimit.blog.edu.cn/2010/602210.html The genealogy relationship of the learning and vision guys(机器学习与视觉大牛族谱深度挖掘) 转自:http://blog.csdn.net/ustcmsraase/archive/2010/11/09/5996635.aspx    ...
阅读(2096) 评论(0)

机器学习中的范数规则化之(一)和(二)L0、L1与L2范数、核范数

机器学习中的范数规则化之(一)L0、L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09        今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知...
阅读(1042) 评论(0)

计算机视觉、模式识别、机器学习常用牛人主页链接

http://blog.csdn.net/idismyself/article/details/16927865 牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at Microsoft Research New Englan...
阅读(641) 评论(0)

多目标跟踪

http://blog.csdn.net/cyxyz/article/details/41821737 一、Guide 进行多目标跟踪的学习。 跟踪的难点: 将现在检测到的目标和以前检测的目标进行匹配连接跟踪被遮挡的目标当被遮挡的目标再次出现时,可以重新分配 二、Resources 1. 这是别人整理的一些跟踪方面的资料,方便以后学习使用。 2. ...
阅读(2044) 评论(1)

Occlusion Geodesics for Online Multi-Object Tracking编译过程

http://blog.csdn.net/minstyrain/article/details/33796753 CVPR2014http://www.cvpapers.com/cvpr2014.html上的处理遮挡的,应该是最新的进展。 OcclusionGeodesics for Online Multi-Object Tracking (project,videos) Ho...
阅读(335) 评论(0)

视频跟踪领域总结全面 Resources in Visual Tracking

http://blog.csdn.net/minstyrain/article/details/38640541 这个应该是目前最全的Tracking相关的文章了,转载请注明出处。 一、Surveyand benchmark: 1.      PAMI2014:VisualTracking_ An Experimental Survey,代码:http://a...
阅读(780) 评论(0)

稀疏表达:向量、矩阵与张量

转载于:http://www.cvchina.info/2010/06/01/sparse-representation-vector-matrix-tensor-1/ http://blog.csdn.net/linj_m/article/details/12968885 即线性方程组 其中矩阵,通常而言是满秩的。向量。现在已知,求解。学过线性代数的同学可能都会说:这个...
阅读(517) 评论(0)

低秩矩阵恢复在机器视觉中的理解-- Sparse Representation based on Low-Rank Dictionary Learning

http://blog.csdn.net/smilebluesky/article/details/41147113 最近看论文,无意中发现低秩矩阵感觉很给力,所以看了几篇低秩矩阵的论文,总结一下。 1.Sparse Representation for Fa ce Recognition based on Discriminative Low-Rank Dictionar...
阅读(350) 评论(0)

low rank representation 低秩表达

http://blog.csdn.net/silence1214/article/details/8802242 去年已经开始在接触低秩表达,最近学习到一些paper,发现对这个还是不是很理解,今天从这里开始记录一下对低秩表达的学习。 目前低秩表达主要用在子空间分割上,也就是给定一组数据,这组数据是从某几个子空间上来的,通过低秩表达可以达到对来自这几个子空间的数据进行聚类,可以找到哪些...
阅读(524) 评论(0)

从稀疏表示到低秩表示http://blog.csdn.net/tiandijun/article/details/41578175

学习 从稀疏表示到低秩表示系列文章包括如下内容: 一、 sparse representation 二、NCSR(NonlocallyCentralized Sparse Representation) 三、GHP(GradientHistogram Preservation) 四、Group sparsity  五、Rankdecomp...
阅读(518) 评论(0)
    个人资料
    • 访问:8901次
    • 积分:106
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:10篇
    • 译文:0篇
    • 评论:1条
    文章存档
    最新评论