[置顶] [ML] 多任务学习以及流行正则化

Andrew Zhang May 24, 2016线性回归容易因为过拟合而出现高方差,因此为了控制模型复杂度往往在线性回归的时候添加很多正则项,众所周知的就有L0,L1,L2L0,L1,L2,L1L1范式效果是使得参数每一项的值向0缩减,而L0,L2L0,L2范式则是通过将一些参数的权值归零来缩减特征的个数。一、多任务学习的提出 在多任务学习中,每一个任务下数据特征的维数相等,并且对应于相同的意...
阅读(1008) 评论(0)

[置顶] ML—EM

Andrew Zhang May 7, 2016EM算法是一个求解极大似然估计问题的迭代算法。EM算法对于给定的初始值都能够保证收敛,但不能保证全局收敛,对初始值敏感。一、EM算法引入 如果现在有一批服从于一个高斯分布的采样样本,想根据样本推测高斯分布的均值,我们知道只需要写出似然函数进行求导即可求解,并且这个高斯分布均值的极大似然估计就是所有采样样本的均值。 现在,让问题稍微复杂点,如果这批...
阅读(785) 评论(0)

[置顶] 四只虫子问题

Andrew Zhang Mar 24, 2016解析:求解这道题目需要一点极坐标下简单的微积分知识即可。一、向径与切线夹角关系 向径:曲线上点与原点连线。切线:曲线上该点切线。他们之间夹角正切有如下关系: tanϕ=r(θ)r′(θ)(1)\tan \phi=\frac{r(\theta)}{r'(\theta)} \tag 1 证明如下 tanϕ=tan(α−θ)=tan(α)−t...
阅读(570) 评论(1)

[置顶] 单链表环问题的证明

Andrew Zhang Mar 2, 2016首先声明一下节点的定义。struct Node { int val; Node* next; public: Node(int v) :val(v), next(NULL) {} };本文的符号图示如下: 1、判断链表是否带环 判断链表是否带环,可以在头结点设两个指针,一个叫fast,一个叫slow,fast...
阅读(561) 评论(2)

[置顶] ML—线性回归系列(四)—lasso&mtl

Andrew Zhang Nov 25, 2015本文主要对套索回归(lasso)进行总结。 本系列的第一篇中线性回归的转化为如下的无约束优化问题 minθ∑mi=1(y(i)−θTx(i))2(0-1)\min_\theta \sum_{i=1}^{m}(y^{(i)}-\theta^Tx^{(i)})^2 \tag{0-1} 其中,x(i)∈Rn×1x^{(i)}\in R^{n\tim...
阅读(581) 评论(0)

[置顶] ML—线性回归系列(一)—线性回归

Andrew Zhang Tianjin Key Laboratory of Cognitive Computing and Application Tianjin University Nov 25, 2015本来以为线性回归是一个特简单的东西,最近遇到很多基于线性回归的东西,才意识到我的无知。为了记录最近的学习历程,还是从线性回归开始系统总结一下吧。一、线性回归 在实际问题中,在考虑变量...
阅读(748) 评论(0)

[置顶] ML—SVM导论

Andrew Zhang Tianjin Key Laboratory of Cognitive Computing and Application Tianjin University Oct 23, 2015本篇博客用来总结对SVM理论的理解,以及学习过程中思考的一些问题。一、SVM模型建立 对于线性可分的数据,SVM指导思想是寻找一个分类超平面,将两类样本分别划分到超平面两侧,并且使得...
阅读(995) 评论(0)

[置顶] ML—拉格朗日对偶和KKT条件

Andrew Zhang Tianjin Key Laboratory of Cognitive Computing and Application Tianjin University Oct 23, 2015本文基于斯坦福Andrew NG讲义和李航统计学习方法。一、拉格朗日乘数法 考虑如下等式约束优化问题。 minwmin_w f(w)f(w) s.t.s.t. hi(w)=0,...
阅读(1470) 评论(0)

[置顶] ML—广义线性模型导论

Andrew Zhang Tianjin Key Laboratory of Cognitive Computing and Application Tianjin University Nov 3, 2015本文主要讲解我对GLM的理解,并将GLM推广到逻辑回归,线性回归和Softmax回归理论中。一、指数分布族(ExponentialFamily) 如果一个分布密度函数可以写成如下的形式...
阅读(14337) 评论(0)

[置顶] 计算一段连续数字的所有约数的和

Andrew ZhangTianjin Key Laboratory of Cognitive Computing and ApplicationTianjin UniversityAug 22, 2015怎么计算一段连续数字的所有约数的和?这是一个比较有趣的问题,因为这个问题本身特别简单,就是一个判断是不是约数,然后求和的问题,但是得到结果的快慢可能就会有天壤之别。我们以"怎么计算10^12次方...
阅读(8147) 评论(0)

d-left和cuckoo hash

Andrew Zhang Nov 16, 2017一、d-left hashing 以2-left hashing为例,两个相同长度的hash表,T1和T2,分配对应两个hash函数,h1和h2。存储一个key时,分别用两个hash函数h1和h2计算两个位置h1[key]和h2[key],然后看看两个hash table对应位置有没有空,只要任意一个有空就可以将此key放在对应位置。 当采用...
阅读(20) 评论(0)

动态规划问题小结

Andrew Zhang Nov 11, 2017Part I 1-1、一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法 1-2、一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法 Part II 2-1、[HihoCoder]#1038 : 01背包 2-2、[HihoCoder]#10...
阅读(42) 评论(0)

EularProject 73:Counting fractions in a range

Andrew Zhang Nov 11, 2017Consider the fraction, n/d, where n and d are positive integers. If n < d and HCF(n,d)=1, it is called a reduced proper fraction.If we list the set of reduced proper fraction...
阅读(39) 评论(0)

EularProject 85:Counting rectangles

Andrew Zhang Nov 4, 2017By counting carefully it can be seen that a rectangular grid measuring 3 by 2 contains eighteen rectangles: Although there exists no rectangular grid that contains exactly tw...
阅读(34) 评论(0)

EularProject 66:Diophantine equation

Andrew Zhang Nov 4, 2017Consider quadratic Diophantine equations of the form:x2–Dy2=1x^2 – Dy^2 = 1For example, when D=13, the minimal solution in x is 6492–13×1802=1649^2 – 13×180^2 = 1.It can be as...
阅读(30) 评论(0)

EularProject 61:Cyclical figurate numbers

Andrew Zhang Sep 4, 2017Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:Triangle P3,...
阅读(94) 评论(0)

[网易]2018校园招聘编程题真题集合

Andrew Zhang Sep 16, 2017题目: 小易准备去魔法王国采购魔法神器,购买魔法神器需要使用魔法币,但是小易现在一枚魔法币都没有,但是小易有两台魔法机器可以通过投入x(x可以为0)个魔法币产生更多的魔法币。 魔法机器1:如果投入x个魔法币,魔法机器会将其变为2x+1个魔法币 魔法机器2:如果投入x个魔法币,魔法机器会将其变为2x+2个魔法币 小易采购魔法神器总共需要n个魔...
阅读(225) 评论(0)

[爱奇艺]校招笔试(2017/9/11)

Andrew Zhang Sep 11, 2017工作好闲。参加校招笔试玩玩儿,题目很简单。题目2: 如果一个数字满足以下条件,就称它是奇异数 1、这个数字至少有两位 2、这个数字的最低两位是相同的 计算区间[L,R]内的所有奇异数。参考答案:#include using namespace std;long long func(long long v) {...
阅读(296) 评论(0)

EularProject 74:Digit factorial chains

Andrew zhang Sep 4, 2017The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:1! + 4! + 5! = 1 + 24 + 120 = 145Perhaps less well known is 169, in th...
阅读(111) 评论(0)

[Algorithm] beam search(集束搜索)

华电北风吹 2017年8月6日beam search是一个普通搜索算法的优化技巧。 拿A*为例来说,在nn维平面中,一个点有3n−13^n-1个邻接点,随着n的增加,需要保存的状态点的个数指数级增加。 如果内存不支持把所有的状态点都给保存了,而还想采用A*算法那怎么办?一个选择就是可以采用beam search的思路,比如说根据适应度函数只保存一半的状态点,或者更少。当然,缺点就是beam s...
阅读(260) 评论(0)

计算机科学中最重要的32个算法

英文原址:http://www.risc.jku.at/people/ckoutsch/stuff/e_algorithms.html奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutschan博士在自己的页面上发布了一篇文章,提到他做了一个调查,参与者大多数是计算机科学家,他请这些科学家投票选出...
阅读(144) 评论(0)

EularProject 71:Ordered fractions

lazy_piger 2017-07-16Consider the fraction, n/d, where n and d are positive integers. If n<<d and HCF(n,d)=1, it is called a reduced proper fraction.If we list the set of reduced proper fractions for...
阅读(382) 评论(0)

Eularproject 76:Counting summations

Andrew Zhang Jul 16, 2017It is possible to write five as a sum in exactly six different ways:4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1How many different ways can one hundred...
阅读(318) 评论(2)

[HihoCoder]#1078 : 线段树的区间修改

华电北风吹 日期:2017-06-01题目链接: http://hihocoder.com/problemset/problem/1078题目分析: 目前超时,有空改改参考代码:#include #include using namespace std;#define INT_MAX 0x7fffffffstruct node { in...
阅读(155) 评论(0)

[Algorithm] 哈希

华电北风吹 日期:2017-05-30 哈希由于其高效的时间复杂度得到了很多的应用。 一、关键字查找 这个应该是Hash最基本的应用了。相比于线查的O(n),BST的O(nlog n)的时间复杂度,Hash仅仅需要O(1)的复杂度。 二、完美Hash 三、信息指纹 信息指纹的提出刚开始是为了解决搜索引擎遇到的各个网页网址过长的问题,利用Hash的方法,可以将各个网址压缩到一个固定宽度...
阅读(155) 评论(0)

C语言的指针

华电北风吹 日期:2017-05-25指针,数组,二级指针,指针数组,数组指针#include #include int main() { int val; int arr1[3] = {1, 2, 3}; int arr2[2][3]= {1, 2, 3, 4, 5, 6}; int *p; int *p1[3];...
阅读(133) 评论(0)

makefile小例子

华电北风吹 2017年4月9号一、用到的三个代码 主函数代码:#include #include #include "LinkList.h"int main() { LinkList* lst=(LinkList*)malloc(sizeof(LinkList)); InsertAtHead(lst,1); InsertAtHea...
阅读(183) 评论(0)

GDB调试指令

华电北风吹 2017年4月9日gcc mainfunc.c -o mainfunc -g上面的命令行中, -o 参数指定了编译生成的可执行文件名,参数 -g 表示将源代码信息编译到可执行文件中。如果不使用参数 -g,会给后面的GDB调试造成不便。当然,如果没有程序的源代码,自然也无从使用 -g 参数,调试/跟踪时也只能是汇编代码级别的调试/跟踪。gdbgdb命令启动GDB,并显示GDB说明file...
阅读(284) 评论(0)

GCC编译过程

1 简介 GCC 的意思也只是 GNU C Compiler 而已。经过了这么多年的发展,GCC 已经不仅仅能支持 C 语言;它现在还支持 Ada 语言、C++ 语言、Java 语言、Objective C 语言、Pascal 语言、COBOL语言,以及支持函数式编程和逻辑编程的 Mercury 语言,等等。而 GCC 也不再单只是 GNU C 语言编译器的意思了,而是变成了 GNU Compil...
阅读(368) 评论(0)

内存,磁盘,cache等访问速度

google 工程师Jeff Dean 首先在他关于分布式系统的ppt文档列出来的,到处被引用的很多。1纳秒等于10亿分之一秒,= 10 ^ -9 秒 Numbers Everyone Should Know L1 cache reference 读取CPU的一级缓存 0.5 ns Branch mispredict(转移、分支预测) 5 ns L2 cache reference 读取...
阅读(163) 评论(0)
299条 共15页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:344088次
    • 积分:6124
    • 等级:
    • 排名:第4489名
    • 原创:286篇
    • 转载:13篇
    • 译文:0篇
    • 评论:63条
    博客专栏
    最新评论