Eular
掉下个小石头
jump jump jump...
展开
-
EularProject 102:Triangle containment
石头2019/6/19Arranged probabilityProblem 100If a box contains twenty-one coloured discs, composed of fifteen blue discs and six red discs, and two discs were taken at random, it can be seen that the...原创 2019-06-19 15:10:47 · 222 阅读 · 0 评论 -
EularProject 43: 带条件约束的排列组合挑选问题
Sub-string divisibility Problem 43 The number, 1406357289, is a 0 to 9 pandigital number because it is made up of each of the digits 0 to 9 in some order, but it also has a rather interesting sub-str原创 2015-07-25 17:26:22 · 2160 阅读 · 0 评论 -
EularProject 38:数字组合1-9分解为数字与1到n的乘积的和
Pandigital multiples Problem 38 Take the number 192 and multiply it by each of 1, 2, and 3:192 × 1 = 192 192 × 2 = 384 192 × 3 = 576 By concatenating each product we get the 1 to 9 pandigital, 192原创 2015-07-30 11:34:43 · 2186 阅读 · 0 评论 -
EularProject 42:单词解码出来的三角形数
Coded triangle numbers Problem 42 The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are:1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …By converting原创 2015-07-30 16:05:38 · 1689 阅读 · 0 评论 -
EularProject 29: a^b的归并排序问题
Distinct powersProblem 29Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5:22=4, 23=8, 24=16, 25=3232=9, 33=27, 34=81, 35=24342=16, 43=64, 44=256, 45=102452=25, 5原创 2015-06-17 20:13:33 · 1381 阅读 · 0 评论 -
EularProject 48: 利用数组求和
Self powers Problem 48 The series, 11+22+33+...+1010=104050713171^1 + 2^2 + 3^3 + ... + 10^{10} = 10405071317.Find the last ten digits of the series, 11+22+33+...+100010001^1 + 2^2 + 3^3 + ... + 1000原创 2015-07-24 00:34:12 · 2258 阅读 · 0 评论 -
EularProject 65: e的收敛序列
Convergents of eProblem 65The square root of 2 can be written as an infinite continued fraction.√2 = 1 +1 2 +1 2 +1 2 +1原创 2015-01-31 13:28:52 · 1277 阅读 · 0 评论 -
EularProject 24: 排列组合的序数问题
Lexicographic permutationsProblem 24A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutation原创 2015-02-04 23:14:03 · 1875 阅读 · 0 评论 -
EularProject 40: 计算正整数连接构成无理数的确定位
Champernowne’s constant Problem 40 An irrational decimal fraction is created by concatenating the positive integers:0.123456789101112131415161718192021…It can be seen that the 12th digit of the fract原创 2015-07-18 01:32:15 · 1936 阅读 · 0 评论 -
EularProject 64: 平方根的周期性
Odd period square rootsProblem 64All square roots are periodic when written as continued fractions and can be written in the form:√N = a0 +1 a1 +1原创 2015-02-01 14:19:52 · 1892 阅读 · 1 评论 -
EularProject 7: 计算10001个素数
10001st primeProblem 7By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.What is the 10 001st prime number?python code :import ma原创 2015-01-26 21:56:01 · 922 阅读 · 0 评论 -
EularProject 12: 三角形数的因子个数问题
Highly divisible triangular numberProblem 12The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28.原创 2015-01-26 23:03:46 · 1776 阅读 · 0 评论 -
EularProject 23: 充足数的和问题
Non-abundant sumsProblem 23A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be原创 2015-02-04 21:59:51 · 1706 阅读 · 0 评论 -
EularProject 27: 二次表达式的连续值素数
Quadratic primesProblem 27Euler discovered the remarkable quadratic formula:n² + n + 41It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. Howe原创 2015-06-17 19:34:27 · 1179 阅读 · 0 评论 -
EularProject 41:最长的n位Pandigital素数问题
Pandigital prime Problem 41 We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What原创 2015-07-30 15:37:14 · 1808 阅读 · 0 评论 -
EularProject 39:给周长判断构成直角三角形个数
华电北风吹 天津大学认知计算与应用重点实验室 完成日期:2015/7/30Integer right triangles Problem 39 If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exactly three solutions for p原创 2015-07-30 12:20:24 · 2801 阅读 · 0 评论 -
EularProject 15: 方格迷宫的路径数
Lattice pathsProblem 15Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner.How many su原创 2015-01-27 11:58:58 · 1720 阅读 · 0 评论 -
EularProject 102:Triangle containment
石头2019/6/13Three distinct points are plotted at random on a Cartesian plane, for which -1000 ≤ x, y ≤ 1000, such that a triangle is formed.Consider the following two triangles:A(-340,495), B(-153,...原创 2019-06-13 20:20:12 · 316 阅读 · 0 评论 -
EularProject 101:Optimum polynomial
If we are presented with the first k terms of a sequence it is impossible to say with certainty the value of the next term, as there are infinitely many polynomial functions that can model the sequenc...原创 2018-12-22 18:58:34 · 397 阅读 · 0 评论 -
EularProject 70:Totient permutation
Euler’s Totient function, φ(n) [sometimes called the phi function], is used to determine the number of positive numbers less than or equal to n which are relatively prime to n. For example, as 1, 2, 4...原创 2018-05-21 21:59:56 · 403 阅读 · 0 评论 -
EularProject 87:Prime power triples
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is 28. In fact, there are exactly four numbers below fifty that can be expressed in such a way:28 = 2...原创 2018-05-20 20:53:43 · 416 阅读 · 0 评论 -
EularProject 85:Counting rectangles
Andrew Zhang Nov 4, 2017By counting carefully it can be seen that a rectangular grid measuring 3 by 2 contains eighteen rectangles: Although there exists no rectangular grid that contains exactly tw原创 2017-11-04 23:38:42 · 383 阅读 · 0 评论 -
EularProject 66:Diophantine equation
Andrew Zhang Nov 4, 2017Consider quadratic Diophantine equations of the form:x2–Dy2=1x^2 – Dy^2 = 1For example, when D=13, the minimal solution in x is 6492–13×1802=1649^2 – 13×180^2 = 1.It can be as原创 2017-11-04 23:31:57 · 420 阅读 · 0 评论 -
EularProject 73:Counting fractions in a range
Andrew Zhang Nov 11, 2017Consider the fraction, n/d, where n and d are positive integers. If n < d and HCF(n,d)=1, it is called a reduced proper fraction.If we list the set of reduced proper fraction原创 2017-11-11 19:34:38 · 360 阅读 · 0 评论 -
EularProject 74:Digit factorial chains
Andrew zhang Sep 4, 2017The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:1! + 4! + 5! = 1 + 24 + 120 = 145Perhaps less well known is 169, in th原创 2017-09-04 23:21:08 · 367 阅读 · 0 评论 -
Eularproject 76:Counting summations
Andrew Zhang Jul 16, 2017It is possible to write five as a sum in exactly six different ways:4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1How many different ways can one hundred原创 2017-07-16 01:02:47 · 619 阅读 · 2 评论 -
EularProject 61:Cyclical figurate numbers
Andrew Zhang Sep 4, 2017Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:Triangle P3,原创 2017-10-17 21:22:48 · 458 阅读 · 0 评论 -
EularProject 71:Ordered fractions
lazy_piger 2017-07-16Consider the fraction, n/d, where n and d are positive integers. If n<<d and HCF(n,d)=1, it is called a reduced proper fraction.If we list the set of reduced proper fractions for原创 2017-07-16 14:42:46 · 707 阅读 · 0 评论 -
[EularProject]#Problem 99:Largest exponential
华电北风吹 2017-02-23Largest exponential Problem 99 Comparing two numbers written in index form like 211 and 37 is not difficult, as any calculator would confirm that 211 = 2048 < 37 = 2187.However, con原创 2017-02-23 22:47:14 · 401 阅读 · 0 评论 -
EularProject 31: 2英镑的组合
Coin sumsProblem 31In England the currency is made up of pound, £, and pence, p, and there are eight coins in general circulation:1p, 2p, 5p, 10p, 20p, 50p, £1 (100p) and £2 (200p).It原创 2015-02-03 21:18:57 · 5963 阅读 · 0 评论 -
EularProject 37:双向可截素数
Truncatable primes Problem 37 The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 7原创 2015-07-30 10:59:23 · 1651 阅读 · 0 评论 -
EularProject 18: 三角形矩阵的最大路径
Maximum path sum IProblem 18By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.37 42 4 68 5 9原创 2015-01-29 13:57:03 · 1578 阅读 · 0 评论 -
EularProject 67: 三角形数字矩阵的最大路径
Maximum path sum IIProblem 67By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.37 42 4 68 5 9原创 2015-01-30 22:23:20 · 1350 阅读 · 0 评论 -
EularProject 19: 星期日的个数
Counting SundaysProblem 19You are given the following information, but you may prefer to do some research for yourself.1 Jan 1900 was a Monday.Thirty days has September,April, June a原创 2015-04-16 09:05:26 · 2110 阅读 · 0 评论 -
EularProject 26: 单位分数的循环问题
Reciprocal cyclesProblem 26A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:1/2= 0.51/3原创 2015-06-17 17:03:05 · 1356 阅读 · 0 评论 -
EularProject 32: 数字1-9排列构成乘法等式
Pandigital products Problem 32 We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigit原创 2015-07-25 22:23:59 · 3257 阅读 · 0 评论 -
EularProject 36:2进制和10进制回文数
华电北风吹 天津大学认知计算与应用重点实验室 完成日期:2015/7/29Double-base palindromes Problem 36 The decimal number, 585 = 10010010012 (binary), is palindromic in both bases.Find the sum of all numbers, less than one milli原创 2015-07-29 23:07:09 · 1763 阅读 · 0 评论 -
EularProject 47:具有相同个数因子的连续数字
Distinct primes factors Problem 47 The first two consecutive numbers to have two distinct prime factors are:14 = 2 × 7 15 = 3 × 5The first three consecutive numbers to have three distinct prime fact原创 2015-08-15 20:20:27 · 902 阅读 · 0 评论 -
EularProject 34: 一个数字与他每位数的阶乘和
Digit factorials Problem 34 145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145.Find the sum of all numbers which are equal to the sum of the factorial of their digits.Note: as 1! = 1 and 2原创 2015-07-09 00:38:02 · 7385 阅读 · 0 评论 -
EularProject 35:循环素数
Circular primes Problem 35 The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.There are thirteen such primes below 100: 2, 3, 5,原创 2015-07-28 09:59:11 · 1582 阅读 · 0 评论