[Phonegap+Sencha Touch] 移动开发(环境配置)

下面以Phonegap+Sencha Touch开发安卓为例:

首先需要一台windows电脑、一个webkit内核的浏览器,推荐Google Chrome

一、Java环境和Android SDK

1、安装JDK和JRE
JRE会在JDK安装完成后自动出现安装界面。
安装完成后,设置环境变量
JAVA_HOME    D:\Program Files\Java\jdk1.7.0_45(不同版本的JDK路径可能不一样)
CLASSPATH    .;%JAVA_HOME%\lib(注意开头的.)
PATH        %JAVA_HOME%\bin

2、安装Android SDK
下载好的Android SDK是个压缩包,名字类似adt-bundle-windows-x86-20131030.zip,压缩包里面包含eclipse、sdk和SDK Manager.exe,将其解压,比如解压到D:\Program Files\Android SDK
打开SDK Manager.exe,选择安卓版本(一般选择2.3和大于等于4.0的版本)进行安装,安装过程比较慢,大概一个多小时。

Android SDK下载失败的解决办法看《安装Android SDK失败了的看过来(东软开源镜像介绍)

最后把 D:\Program Files\Android SDK\sdk\tools 和 D:\Program Files\Android SDK\sdk\platform-tools 添加到系统PATH环境变量中

3、将ant的路径添加到PATH环境变量
D:\Program Files\Android SDK\eclipse\plugins\org.apache.ant_1.8.3.v201301120609\bin


二、Sencha Touch

1、下载 Sencha Touch, 并解压,如解压到D:\Code\Web\touch-2.4.0

2、下载 Sencha Cmd 并安装(请下载sencha cmd 4.x版本,5.x版本很多人有问题,我也没用过)
Sencha Cmd是开发Sencha应用程序(sencha touch或者ExtJs)的一个命令行工具,提供了创建、编译(压缩)、部署等功能。

3、安装 RubyInstaller 1.9.3,安装时选择"Add Ruby executables to your PATH",即添加到PATH环境变量
Sencha Cmd需要Ruby,必须安装小于2.0的版本

4、安装compass (前提是安装了第三步的Ruby,compass用于编译sass样式)
打开cmd,执行gem install compass
注意:
1、如果安装不上,请查看
2、 如果编译sass的时候,出现"File to import not found or unreadable: blueprint/typography"这个错误,请查看


三、PhoneGap

1、先安装NodeJS
PhoneGap的安装需要用到NodeJS里面的npm模块管理工具

2、安装PhoneGap
打开cmd,运行:npm install -g phonegap
如果要卸载,执行:npm uninstall -g phonegap
如果要更新,执行:npm update -g phonegap
如果要安装特定版本,执行:npm install -g phonegap@版本号    比如 npm install -g phonegap@3.3.0-0.19.6

3、安装GitHub工具
在用sencha touch开发webapp的时候,可能需要用到手机的原生API,如摄像头、陀螺仪等,phonegap提供了调用原生API的支持,但是需要手动为项目添加对应功能的phonegap插件,这些插件需要用GitHub下载


四、调试

1、对于安卓4.4以下版本的系统,或者其他系统(ios,wp8等 )的调试
在 PC 端,我们可以使用 Chrome 开发人员工具方便的调试网站或者 Web 应用。但是,当我们想在移动设备上调试站点或者应用的时候,这些工具就派不上用场了。因此,移动开发人员都希望能有 Mobile 版本的 Chrome 开发人员工具。
Weinre 就是这样一款工具,可以帮助我们调试移动网站及 PhoneGap 应用。

安装weinre
打开cmd,执行:npm -g install weinre
如果要卸载,执行:npm uninstall -g phonegap


2、对于安卓4.4或者以上版本的系统
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值