四叉树空间索引原理及其实现

原创 2013年10月05日 15:59:19

今天依然在放假中,在此将以前在学校写的四叉树的东西拿出来和大家分享。

四叉树索引的基本思想是将地理空间递归划分为不同层次的树结构。它将已知范围的空间等分成四个相等的子空间,如此递归下去,直至树的层次达到一定深度或者满足某种要求后停止分割。四叉树的结构比较简单,并且当空间数据对象分布比较均匀时,具有比较高的空间数据插入和查询效率,因此四叉树是GIS中常用的空间索引之一。常规四叉树的结构如所示,地理空间对象都存储在叶子节点上,中间节点以及根节点不存储地理空间对象。

 

四叉树示意图

 

四叉树对于区域查询,效率比较高。但如果空间对象分布不均匀,随着地理空间对象的不断插入,四叉树的层次会不断地加深,将形成一棵严重不平衡的四叉树,那么每次查询的深度将大大的增多,从而导致查询效率的急剧下降。

 

本节将介绍一种改进的四叉树索引结构。四叉树结构是自顶向下逐步划分的一种树状的层次结构。传统的四叉树索引存在着以下几个缺点:

(1)空间实体只能存储在叶子节点中,中间节点以及根节点不能存储空间实体信息,随着空间对象的不断插入,最终会导致四叉树树的层次比较深,在进行空间数据窗口查询的时候效率会比较低下。

(2)同一个地理实体在四叉树的分裂过程中极有可能存储在多个节点中,这样就导致了索引存储空间的浪费。

(3)由于地理空间对象可能分布不均衡,这样会导致常规四叉树生成一棵极为不平衡的树,这样也会造成树结构的不平衡以及存储空间的浪费。

相应的改进方法,将地理实体信息存储在完全包含它的最小矩形节点中,不存储在它的父节点中,每个地理实体只在树中存储一次,避免存储空间的浪费。首先生成满四叉树,避免在地理实体插入时需要重新分配内存,加快插入的速度,最后将空的节点所占内存空间释放掉。改进后的四叉树结构如下图所示。四叉树的深度一般取经验值4-7之间为最佳。

 

改进的四叉树结构

 

为了维护空间索引与对存储在文件或数据库中的空间数据的一致性,作者设计了如下的数据结构支持四叉树的操作。

(1)四分区域标识

分别定义了一个平面区域的四个子区域索引号,右上为第一象限0,左上为第二象限1,左下为第三象限2,右下为第四象限3

typedef enum

{

      UR = 0,// UR第一象限

      UL = 1, // UL为第二象限

      LL = 2, // LL为第三象限

      LR = 3  // LR为第四象限

}QuadrantEnum;

(2)空间对象数据结构

空间对象数据结构是对地理空间对象的近似,在空间索引中,相当一部分都是采用MBR作为近似。

/*空间对象MBR信息*/

typedef struct SHPMBRInfo

{

      int nID;       //空间对象ID

      MapRect Box;    //空间对象MBR范围坐标

}SHPMBRInfo;

nID是空间对象的标识号,Box是空间对象的最小外包矩形(MBR)。

(3)四叉树节点数据结构

四叉树节点是四叉树结构的主要组成部分,主要用于存储空间对象的标识号和MBR,也是四叉树算法操作的主要部分。

/*四叉树节点类型结构*/

typedef struct QuadNode

{

      MapRect            Box;                   //节点所代表的矩形区域

      int                nShpCount;        //节点所包含的所有空间对象个数

      SHPMBRInfo* pShapeObj;          //空间对象指针数组

      int         nChildCount;            //子节点个数

      QuadNode *children[4];             //指向节点的四个孩子

}QuadNode;

Box是代表四叉树对应区域的最小外包矩形,上一层的节点的最小外包矩形包含下一层最小外包矩形区域;nShpCount代表本节点包含的空间对象的个数;pShapeObj代表指向空间对象存储地址的首地址,同一个节点的空间对象在内存中连续存储;nChildCount代表节点拥有的子节点的数目;children是指向孩子节点指针的数组。

上述理论部分都都讲的差不多了,下面就贴上我的C语言实现版本代码。

头文件如下:

#ifndef __QUADTREE_H_59CAE94A_E937_42AD_AA27_794E467715BB__
#define __QUADTREE_H_59CAE94A_E937_42AD_AA27_794E467715BB__




/* 一个矩形区域的象限划分::

UL(1)   |    UR(0)
----------|-----------
LL(2)   |    LR(3)
以下对该象限类型的枚举
*/
typedef enum
{
	UR = 0,
	UL = 1,
	LL = 2,
	LR = 3
}QuadrantEnum;

/*空间对象MBR信息*/
typedef struct SHPMBRInfo
{
	int nID;		//空间对象ID号
	MapRect Box;	//空间对象MBR范围坐标
}SHPMBRInfo;

/* 四叉树节点类型结构 */
typedef struct QuadNode
{
	MapRect		Box;			//节点所代表的矩形区域
	int			nShpCount;		//节点所包含的所有空间对象个数
	SHPMBRInfo* pShapeObj;		//空间对象指针数组
	int		nChildCount;		//子节点个数
	QuadNode  *children[4];		//指向节点的四个孩子 
}QuadNode;

/* 四叉树类型结构 */
typedef struct quadtree_t
{
	QuadNode  *root;
	int         depth;           // 四叉树的深度                    
}QuadTree;


	//初始化四叉树节点
	QuadNode *InitQuadNode();

	//层次创建四叉树方法(满四叉树)
	void CreateQuadTree(int depth,GeoLayer *poLayer,QuadTree* pQuadTree);

	//创建各个分支
	void CreateQuadBranch(int depth,MapRect &rect,QuadNode** node);

	//构建四叉树空间索引
	void BuildQuadTree(GeoLayer*poLayer,QuadTree* pQuadTree);

	//四叉树索引查询(矩形查询)
	void SearchQuadTree(QuadNode* node,MapRect &queryRect,vector<int>& ItemSearched);

	//四叉树索引查询(矩形查询)并行查询
	void SearchQuadTreePara(vector<QuadNode*> resNodes,MapRect &queryRect,vector<int>& ItemSearched);

	//四叉树的查询(点查询)
	void PtSearchQTree(QuadNode* node,double cx,double cy,vector<int>& ItemSearched);

	//将指定的空间对象插入到四叉树中
	void Insert(long key,MapRect &itemRect,QuadNode* pNode);

	//将指定的空间对象插入到四叉树中
	void InsertQuad(long key,MapRect &itemRect,QuadNode* pNode);

	//将指定的空间对象插入到四叉树中
	void InsertQuad2(long key,MapRect &itemRect,QuadNode* pNode);

	//判断一个节点是否是叶子节点
	bool IsQuadLeaf(QuadNode* node);

	//删除多余的节点
	bool DelFalseNode(QuadNode* node);

	//四叉树遍历(所有要素)
	void TraversalQuadTree(QuadNode* quadTree,vector<int>& resVec);

	//四叉树遍历(所有节点)
	void TraversalQuadTree(QuadNode* quadTree,vector<QuadNode*>& arrNode);

	//释放树的内存空间
	void ReleaseQuadTree(QuadNode** quadTree);

	//计算四叉树所占的字节的大小
	long CalByteQuadTree(QuadNode* quadTree,long& nSize);


#endif


源文件如下:

#include "QuadTree.h"


QuadNode *InitQuadNode()
{
	QuadNode *node = new QuadNode;
	node->Box.maxX = 0;
	node->Box.maxY = 0;
	node->Box.minX = 0;
	node->Box.minY = 0;

	for (int i = 0; i < 4; i ++)
	{
		node->children[i] = NULL;
	}
	node->nChildCount = 0;
	node->nShpCount = 0;
	node->pShapeObj = NULL;

	return node;
}

void CreateQuadTree(int depth,GeoLayer *poLayer,QuadTree* pQuadTree)
{
	pQuadTree->depth = depth;

	GeoEnvelope env;	//整个图层的MBR
	poLayer->GetExtent(&env);
	
	MapRect rect;
	rect.minX = env.MinX;
	rect.minY = env.MinY;
	rect.maxX = env.MaxX;
	rect.maxY = env.MaxY;
	
	//创建各个分支
	CreateQuadBranch(depth,rect,&(pQuadTree->root));

	int nCount = poLayer->GetFeatureCount();
	GeoFeature **pFeatureClass = new GeoFeature*[nCount];
	for (int i = 0; i < poLayer->GetFeatureCount(); i ++)
	{
		pFeatureClass[i] = poLayer->GetFeature(i); 
	}

	//插入各个要素
	GeoEnvelope envObj;	//空间对象的MBR
	//#pragma omp parallel for
	for (int i = 0; i < nCount; i ++)
	{
		pFeatureClass[i]->GetGeometry()->getEnvelope(&envObj);
		rect.minX = envObj.MinX;
		rect.minY = envObj.MinY;
		rect.maxX = envObj.MaxX;
		rect.maxY = envObj.MaxY;
		InsertQuad(i,rect,pQuadTree->root);
	}

	//DelFalseNode(pQuadTree->root);
}

void CreateQuadBranch(int depth,MapRect &rect,QuadNode** node)
{
	if (depth != 0)
	{
		*node = InitQuadNode();	//创建树根
		QuadNode *pNode = *node;
		pNode->Box = rect;
		pNode->nChildCount = 4;

		MapRect boxs[4];
		pNode->Box.Split(boxs,boxs+1,boxs+2,boxs+3);
		for (int i = 0; i < 4; i ++)
		{
			//创建四个节点并插入相应的MBR
			pNode->children[i] = InitQuadNode();
			pNode->children[i]->Box = boxs[i];

			CreateQuadBranch(depth-1,boxs[i],&(pNode->children[i]));
		}
	}
}

void BuildQuadTree(GeoLayer *poLayer,QuadTree* pQuadTree)
{
	assert(poLayer);
	GeoEnvelope env;	//整个图层的MBR
	poLayer->GetExtent(&env);
	pQuadTree->root = InitQuadNode();

	QuadNode* rootNode = pQuadTree->root;

	rootNode->Box.minX = env.MinX;
	rootNode->Box.minY = env.MinY;
	rootNode->Box.maxX = env.MaxX;
	rootNode->Box.maxY = env.MaxY;

	//设置树的深度(	根据等比数列的求和公式)
	//pQuadTree->depth = log(poLayer->GetFeatureCount()*3/8.0+1)/log(4.0);
	int nCount = poLayer->GetFeatureCount();

	MapRect rect;
	GeoEnvelope envObj;	//空间对象的MBR
	for (int i = 0; i < nCount; i ++)
	{
		poLayer->GetFeature(i)->GetGeometry()->getEnvelope(&envObj);
		rect.minX = envObj.MinX;
		rect.minY = envObj.MinY;
		rect.maxX = envObj.MaxX;
		rect.maxY = envObj.MaxY;
		InsertQuad2(i,rect,rootNode);
	}

	DelFalseNode(pQuadTree->root);
}

void SearchQuadTree(QuadNode* node,MapRect &queryRect,vector<int>& ItemSearched)
{
	assert(node);

	//int coreNum = omp_get_num_procs();
	//vector<int> * pResArr = new vector<int>[coreNum];

	if (NULL != node)
	{
		for (int i = 0; i < node->nShpCount; i ++)
		{
			if (queryRect.Contains(node->pShapeObj[i].Box)
				|| queryRect.Intersects(node->pShapeObj[i].Box))
			{
				ItemSearched.push_back(node->pShapeObj[i].nID);
			}
		}

		//并行搜索四个孩子节点
		/*#pragma omp parallel sections
		{
			#pragma omp section
			if ((node->children[0] != NULL) && 
				(node->children[0]->Box.Contains(queryRect)
				|| node->children[0]->Box.Intersects(queryRect)))
			{
				int tid = omp_get_thread_num();
				SearchQuadTree(node->children[0],queryRect,pResArr[tid]);
			}

			#pragma omp section
			if ((node->children[1] != NULL) && 
				(node->children[1]->Box.Contains(queryRect)
				|| node->children[1]->Box.Intersects(queryRect)))
			{
				int tid = omp_get_thread_num();
				SearchQuadTree(node->children[1],queryRect,pResArr[tid]);
			}

			#pragma omp section
			if ((node->children[2] != NULL) && 
				(node->children[2]->Box.Contains(queryRect)
				|| node->children[2]->Box.Intersects(queryRect)))
			{
				int tid = omp_get_thread_num();
				SearchQuadTree(node->children[2],queryRect,pResArr[tid]);
			}

			#pragma omp section
			if ((node->children[3] != NULL) && 
				(node->children[3]->Box.Contains(queryRect)
				|| node->children[3]->Box.Intersects(queryRect)))
			{
				int tid = omp_get_thread_num();
				SearchQuadTree(node->children[3],queryRect,pResArr[tid]);
			}
		}*/
		for (int i = 0; i < 4; i ++)
		{
			if ((node->children[i] != NULL) && 
				(node->children[i]->Box.Contains(queryRect)
				|| node->children[i]->Box.Intersects(queryRect)))
			{
				SearchQuadTree(node->children[i],queryRect,ItemSearched);
				//node = node->children[i];	//非递归
			}
		}
	}

	/*for (int i = 0 ; i < coreNum; i ++)
	{
		ItemSearched.insert(ItemSearched.end(),pResArr[i].begin(),pResArr[i].end());
	}*/

}

void SearchQuadTreePara(vector<QuadNode*> resNodes,MapRect &queryRect,vector<int>& ItemSearched)
{
	int coreNum = omp_get_num_procs();
	omp_set_num_threads(coreNum);
	vector<int>* searchArrs = new vector<int>[coreNum];
	for (int i = 0; i < coreNum; i ++)
	{
		searchArrs[i].clear();
	}

	#pragma omp parallel for
	for (int i = 0; i < resNodes.size(); i ++)
	{
		int tid = omp_get_thread_num();
		for (int j = 0; j < resNodes[i]->nShpCount; j ++)
		{
			if (queryRect.Contains(resNodes[i]->pShapeObj[j].Box)
				|| queryRect.Intersects(resNodes[i]->pShapeObj[j].Box))
			{
				searchArrs[tid].push_back(resNodes[i]->pShapeObj[j].nID);
			}
		}
	}

	for (int i = 0; i < coreNum; i ++)
	{
		ItemSearched.insert(ItemSearched.end(),
			searchArrs[i].begin(),searchArrs[i].end());
	}

	delete [] searchArrs;
	searchArrs = NULL;
}

void PtSearchQTree(QuadNode* node,double cx,double cy,vector<int>& ItemSearched)
{
	assert(node);
	if (node->nShpCount >0)		//节点		  
	{
		for (int i = 0; i < node->nShpCount; i ++)
		{
			if (node->pShapeObj[i].Box.IsPointInRect(cx,cy))
			{
				ItemSearched.push_back(node->pShapeObj[i].nID);
			}
		}
	}

	else if (node->nChildCount >0)				//节点
	{
		for (int i = 0; i < 4; i ++)
		{
			if (node->children[i]->Box.IsPointInRect(cx,cy))
			{
				PtSearchQTree(node->children[i],cx,cy,ItemSearched);
			}
		}
	}

	//找出重复元素的位置
	sort(ItemSearched.begin(),ItemSearched.end());	//先排序,默认升序
	vector<int>::iterator unique_iter = 
		unique(ItemSearched.begin(),ItemSearched.end());
	ItemSearched.erase(unique_iter,ItemSearched.end());
}

void Insert(long key, MapRect &itemRect,QuadNode* pNode)
{
	QuadNode *node = pNode;		//保留根节点副本
	SHPMBRInfo pShpInfo;
	
	//节点有孩子
	if (0 < node->nChildCount)
	{
		for (int i = 0; i < 4; i ++)
		{  
			//如果包含或相交,则将节点插入到此节点
			if (node->children[i]->Box.Contains(itemRect)
				|| node->children[i]->Box.Intersects(itemRect))
			{
				//node = node->children[i];
				Insert(key,itemRect,node->children[i]);
			}
		}
	}

	//如果当前节点存在一个子节点时
	else if (1 == node->nShpCount)
	{
		MapRect boxs[4];
		node->Box.Split(boxs,boxs+1,boxs+2,boxs+3);

		//创建四个节点并插入相应的MBR
		node->children[UR] = InitQuadNode();
		node->children[UL] = InitQuadNode();
		node->children[LL] = InitQuadNode();
		node->children[LR] = InitQuadNode();

		node->children[UR]->Box = boxs[0];
		node->children[UL]->Box = boxs[1];
		node->children[LL]->Box = boxs[2];
		node->children[LR]->Box = boxs[3];
		node->nChildCount = 4;

		for (int i = 0; i < 4; i ++)
		{  
			//将当前节点中的要素移动到相应的子节点中
			for (int j = 0; j < node->nShpCount; j ++)
			{
				if (node->children[i]->Box.Contains(node->pShapeObj[j].Box)
					|| node->children[i]->Box.Intersects(node->pShapeObj[j].Box))
				{
					node->children[i]->nShpCount += 1;
					node->children[i]->pShapeObj = 
						(SHPMBRInfo*)malloc(node->children[i]->nShpCount*sizeof(SHPMBRInfo));
					
					memcpy(node->children[i]->pShapeObj,&(node->pShapeObj[j]),sizeof(SHPMBRInfo));

					free(node->pShapeObj);
					node->pShapeObj = NULL;
					node->nShpCount = 0;
				}
			}
		}

		for (int i = 0; i < 4; i ++)
		{  
			//如果包含或相交,则将节点插入到此节点
			if (node->children[i]->Box.Contains(itemRect)
				|| node->children[i]->Box.Intersects(itemRect))
			{
				if (node->children[i]->nShpCount == 0)	 //如果之前没有节点
				{
					node->children[i]->nShpCount += 1;
					node->pShapeObj = 
						(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->children[i]->nShpCount);
				}
				else if	(node->children[i]->nShpCount > 0)
				{
					node->children[i]->nShpCount += 1;
					node->children[i]->pShapeObj = 
						(SHPMBRInfo *)realloc(node->children[i]->pShapeObj,
						sizeof(SHPMBRInfo)*node->children[i]->nShpCount);
				}

				pShpInfo.Box = itemRect;
				pShpInfo.nID = key;
				memcpy(node->children[i]->pShapeObj,
					&pShpInfo,sizeof(SHPMBRInfo));
			}
		}
	}

	//当前节点没有空间对象
	else if (0 == node->nShpCount)
	{
		node->nShpCount += 1;
		node->pShapeObj = 
			(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->nShpCount);

		pShpInfo.Box = itemRect;
		pShpInfo.nID = key;
		memcpy(node->pShapeObj,&pShpInfo,sizeof(SHPMBRInfo));
	}
}

void InsertQuad(long key,MapRect &itemRect,QuadNode* pNode)
{
	assert(pNode != NULL);

	if (!IsQuadLeaf(pNode))	   //非叶子节点
	{
		int nCorver = 0;		//跨越的子节点个数
		int iIndex = -1;		//被哪个子节点完全包含的索引号
		for (int i = 0; i < 4; i ++)
		{
			if (pNode->children[i]->Box.Contains(itemRect)
				&& pNode->Box.Contains(itemRect))
			{
				nCorver += 1;
				iIndex = i;
			}
		}

		//如果被某一个子节点包含,则进入该子节点
		if (/*pNode->Box.Contains(itemRect) || 
			pNode->Box.Intersects(itemRect)*/1 <= nCorver)
		{ 
			InsertQuad(key,itemRect,pNode->children[iIndex]);
		}

		//如果跨越了多个子节点,直接放在这个节点中
		else if (nCorver == 0)
		{
			if (pNode->nShpCount == 0)	 //如果之前没有节点
			{
				pNode->nShpCount += 1;
				pNode->pShapeObj = 
					(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*pNode->nShpCount);
			}
			else
			{
				pNode->nShpCount += 1;
				pNode->pShapeObj = 
					(SHPMBRInfo *)realloc(pNode->pShapeObj,sizeof(SHPMBRInfo)*pNode->nShpCount);
			}

			SHPMBRInfo pShpInfo;
			pShpInfo.Box = itemRect;
			pShpInfo.nID = key;
			memcpy(pNode->pShapeObj+pNode->nShpCount-1,&pShpInfo,sizeof(SHPMBRInfo));
		}
	}

	//如果是叶子节点,直接放进去
	else if (IsQuadLeaf(pNode))
	{
		if (pNode->nShpCount == 0)	 //如果之前没有节点
		{
			pNode->nShpCount += 1;
			pNode->pShapeObj = 
				(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*pNode->nShpCount);
		}
		else
		{
			pNode->nShpCount += 1;
			pNode->pShapeObj = 
				(SHPMBRInfo *)realloc(pNode->pShapeObj,sizeof(SHPMBRInfo)*pNode->nShpCount);
		}

		SHPMBRInfo pShpInfo;
		pShpInfo.Box = itemRect;
		pShpInfo.nID = key;
		memcpy(pNode->pShapeObj+pNode->nShpCount-1,&pShpInfo,sizeof(SHPMBRInfo));
	}
}

void InsertQuad2(long key,MapRect &itemRect,QuadNode* pNode)
{
	QuadNode *node = pNode;		//保留根节点副本
	SHPMBRInfo pShpInfo;

	//节点有孩子
	if (0 < node->nChildCount)
	{
		for (int i = 0; i < 4; i ++)
		{  
			//如果包含或相交,则将节点插入到此节点
			if (node->children[i]->Box.Contains(itemRect)
				|| node->children[i]->Box.Intersects(itemRect))
			{
				//node = node->children[i];
				Insert(key,itemRect,node->children[i]);
			}
		}
	}

	//如果当前节点存在一个子节点时
	else if (0 == node->nChildCount)
	{
		MapRect boxs[4];
		node->Box.Split(boxs,boxs+1,boxs+2,boxs+3);

		int cnt = -1;
		for (int i = 0; i < 4; i ++)
		{  
			//如果包含或相交,则将节点插入到此节点
			if (boxs[i].Contains(itemRect))
			{
				cnt = i;
			}
		}

		//如果有一个矩形包含此对象,则创建四个孩子节点
		if (cnt > -1)
		{
			for (int i = 0; i < 4; i ++)
			{
				//创建四个节点并插入相应的MBR
				node->children[i] = InitQuadNode();
				node->children[i]->Box = boxs[i];
			}
			node->nChildCount = 4;
			InsertQuad2(key,itemRect,node->children[cnt]);	//递归
		}

		//如果都不包含,则直接将对象插入此节点
		if (cnt == -1)
		{
			if (node->nShpCount == 0)	 //如果之前没有节点
			{
				node->nShpCount += 1;
				node->pShapeObj = 
					(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->nShpCount);
			}
			else if	(node->nShpCount > 0)
			{
				node->nShpCount += 1;
				node->pShapeObj = 
					(SHPMBRInfo *)realloc(node->pShapeObj,
					sizeof(SHPMBRInfo)*node->nShpCount);
			}

			pShpInfo.Box = itemRect;
			pShpInfo.nID = key;
			memcpy(node->pShapeObj,
				&pShpInfo,sizeof(SHPMBRInfo));
		}
	}

	//当前节点没有空间对象
	/*else if (0 == node->nShpCount)
	{
		node->nShpCount += 1;
		node->pShapeObj = 
			(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->nShpCount);

		pShpInfo.Box = itemRect;
		pShpInfo.nID = key;
		memcpy(node->pShapeObj,&pShpInfo,sizeof(SHPMBRInfo));
	}*/
}

bool IsQuadLeaf(QuadNode* node)
{
	if (NULL == node)
	{
		return 1;
	}
	for (int i = 0; i < 4; i ++)
	{
		if (node->children[i] != NULL)
		{
			return 0;
		}
	}

	return 1;
}

bool DelFalseNode(QuadNode* node)
{
	//如果没有子节点且没有要素
	if (node->nChildCount ==0 && node->nShpCount == 0)
	{
		ReleaseQuadTree(&node);
	}

	//如果有子节点
	else if (node->nChildCount > 0)
	{
		for (int i = 0; i < 4; i ++)
		{
			DelFalseNode(node->children[i]);
		}
	}

	return 1;
}

void TraversalQuadTree(QuadNode* quadTree,vector<int>& resVec)
{
	QuadNode *node = quadTree;
	int i = 0; 
	if (NULL != node)
	{
		//将本节点中的空间对象存储数组中
		for (i = 0; i < node->nShpCount; i ++)
		{
			resVec.push_back((node->pShapeObj+i)->nID);
		}

		//遍历孩子节点
		for (i = 0; i < node->nChildCount; i ++)
		{
			if (node->children[i] != NULL)
			{
				TraversalQuadTree(node->children[i],resVec);
			}
		}
	}

}

void TraversalQuadTree(QuadNode* quadTree,vector<QuadNode*>& arrNode)
{
	deque<QuadNode*> nodeQueue;
	if (quadTree != NULL)
	{
		nodeQueue.push_back(quadTree);
		while (!nodeQueue.empty())
		{
			QuadNode* queueHead = nodeQueue.at(0);	//取队列头结点
			arrNode.push_back(queueHead);
			nodeQueue.pop_front();
			for (int i = 0; i < 4; i ++)
			{
				if (queueHead->children[i] != NULL)
				{
					nodeQueue.push_back(queueHead->children[i]);
				}
			}
		}
	}
}

void ReleaseQuadTree(QuadNode** quadTree)
{
	int i = 0;
	QuadNode* node = *quadTree;
	if (NULL == node)
	{
		return;
	}

	else
	{
		for (i = 0; i < 4; i ++)
		{ 
			ReleaseQuadTree(&node->children[i]);
		}
		free(node);
		node = NULL;
	}

	node = NULL;
}

long CalByteQuadTree(QuadNode* quadTree,long& nSize)
{
	if (quadTree != NULL)
	{
		nSize += sizeof(QuadNode)+quadTree->nChildCount*sizeof(SHPMBRInfo);
		for (int i = 0; i < 4; i ++)
		{
			if (quadTree->children[i] != NULL)
			{
				nSize += CalByteQuadTree(quadTree->children[i],nSize);
			}
		}
	}

	return 1;
}


代码有点长,有需要的朋友可以借鉴并自己优化。

 

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

四叉树与八叉树

前序 四叉树或四元树也被称为Q树(Q-Tree)。四叉树广泛应用于图像处理、空间数据索引、2D中的快速碰撞检测、存储稀疏数据等,而八叉树(Octree)主要应用于3D图形处理。对游戏编程,这会很有用...

四叉树算法

title: 四叉树算法 date: 2016-1-11 15:10 categories: IOS tags: 算法 小小程序猿 我的博客:http://daycoding.com 转载:h...
  • coolwxb
  • coolwxb
  • 2016年03月05日 10:25
  • 5952

四叉树优化碰撞检测

游戏中碰撞检测分为两个阶段:broad phase 和 narrow phase。接下来要介绍的就是broad phase。在broad phase这个阶段,我们的主要任务是将屏幕上的物体进行筛选,筛...

js 实现四叉树

看到了一篇as3 实现的四叉树,http://bbs.9ria.com/thread-243675-1-1.html,自己用js实现了一遍。想做aoi的管理游戏里面的物体。var qtree =(f...

四叉树原理

最近利用OpenGL实现了一个简单的四叉树,对窗口进行分割。 数据结构: AreaType m_bounds; rectContainer m_contents; p...
  • Major_
  • Major_
  • 2012年03月30日 19:50
  • 7236

场景管理:四叉树算法C++实现

简单实现了游戏中场景管理用到的四叉树算法 代码结构: object.h,object.cpp被管理的对象类quad_tree_node.h,quad_tree_node.cpp四叉树类ma...

四叉树编码实现

关于四叉树的原理我想应该不需要多说啦,大家都懂得,实在不晓得的话,百度吧~ 由于四叉树索引效率还可以并且非常简单,因此在Gis中广泛的应用也是毋庸置疑的。   本次就自己实现一个地图四叉树索引,...

四叉树索引的改进算法

转:四叉树索引的改进算法   (2012-04-11 18:49:35) 转载▼ 标签:  四叉树   空间索引   gis   改进 ...

三维地形绘制--四叉树递归算法

        此种模型绘制类似米字形的网格。由于整个过程递归调用绘图函数,所以可以根据误差判断绘制DEM的精细程度,从而绘制出不同精细程度的DEM,为解决漫游中数据量较大而引起的画面不流畅现象提供了...
  • doncai
  • doncai
  • 2007年05月26日 20:48
  • 5044

四叉树的C++实现

数据结构 抽象数据类型定义如下: ADT QuadTrees{ 数据对象D:D是具有相同性质的具有二维结构的数据元素的集合,本实验为坐标数据。 数据关系R:若D为空集,...
  • qithon
  • qithon
  • 2016年02月29日 15:59
  • 783
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:四叉树空间索引原理及其实现
举报原因:
原因补充:

(最多只允许输入30个字)