最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)

转载 2011年01月20日 23:47:00

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

  Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。

 

Dijkstra算法的迭代过程:

主题好好理解上图!

以下是具体的实现(C/C++):

/***************************************
* About:    有向图的Dijkstra算法实现
* Author:   Tanky Woo
* Blog:     www.WuTianQi.com
**************************************
*/
 
#include 
<iostream>
using namespace std;
 
const int maxnum = 100;
const int maxint = 999999;
 
 
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
    
bool s[maxnum];    // 判断是否已存入该点到S集合中
    for(int i=1; i<=n; ++i)
    {
        dist[i] 
= c[v][i];
        s[i] 
= 0;     // 初始都未用过该点
        if(dist[i] == maxint)
            prev[i] 
= 0;
        
else
            prev[i] 
= v;
    }
    dist[v] 
= 0;
    s[v] 
= 1;
 
    
// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
    
// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
    for(int i=2; i<=n; ++i)
    {
        
int tmp = maxint;
        
int u = v;
        
// 找出当前未使用的点j的dist[j]最小值
        for(int j=1; j<=n; ++j)
            
if((!s[j]) && dist[j]<tmp)
            {
                u 
= j;              // u保存当前邻接点中距离最小的点的号码
                tmp = dist[j];
            }
        s[u] 
= 1;    // 表示u点已存入S集合中
 
        
// 更新dist
        for(int j=1; j<=n; ++j)
            
if((!s[j]) && c[u][j]<maxint)
            {
                
int newdist = dist[u] + c[u][j];
                
if(newdist < dist[j])
                {
                    dist[j] 
= newdist;
                    prev[j] 
= u;
                }
            }
    }
}
 
void searchPath(int *prev,int v, int u)
{
    
int que[maxnum];
    
int tot = 1;
    que[tot] 
= u;
    tot
++;
    
int tmp = prev[u];
    
while(tmp != v)
    {
        que[tot] 
= tmp;
        tot
++;
        tmp 
= prev[tmp];
    }
    que[tot] 
= v;
    
for(int i=tot; i>=1--i)
        
if(i != 1)
            cout 
<< que[i] << " -> ";
        
else
            cout 
<< que[i] << endl;
}
 
int main()
{
    freopen(
"input.txt""r", stdin);
    
// 各数组都从下标1开始
    int dist[maxnum];     // 表示当前点到源点的最短路径长度
    int prev[maxnum];     // 记录当前点的前一个结点
    int c[maxnum][maxnum];   // 记录图的两点间路径长度
    int n, line;             // 图的结点数和路径数
 
    
// 输入结点数
    cin >> n;
    
// 输入路径数
    cin >> line;
    
int p, q, len;          // 输入p, q两点及其路径长度
 
    
// 初始化c[][]为maxint
    for(int i=1; i<=n; ++i)
        
for(int j=1; j<=n; ++j)
            c[i][j] 
= maxint;
 
    
for(int i=1; i<=line; ++i)  
    {
        cin 
>> p >> q >> len;
        
if(len < c[p][q])       // 有重边
        {
            c[p][q] 
= len;      // p指向q
            c[q][p] = len;      // q指向p,这样表示无向图
        }
    }
 
    
for(int i=1; i<=n; ++i)
        dist[i] 
= maxint;
    
for(int i=1; i<=n; ++i)
    {
        
for(int j=1; j<=n; ++j)
            printf(
"%8d", c[i][j]);
        printf(
"/n");
    }
 
    Dijkstra(n, 
1, dist, prev, c);
 
    
// 最短路径长度
    cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
 
    
// 路径
    cout << "源点到最后一个顶点的路径为: ";
    searchPath(prev, 
1, n);
}

 

 

 

 

输入数据:
5
7
1 2 10
1 4 30
1 5 100
2 3 50
3 5 10
4 3 20
4 5 60
输出数据:
999999 10 999999 30 100
10 999999 50 999999 999999
999999 50 999999 20 10
30 999999 20 999999 60
100 999999 10 60 999999
源点到最后一个顶点的最短路径长度: 60
源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5

最后给出两道题目练手,都是直接套用模版就OK的:
1.HDOJ 1874 畅通工程续
http://www.wutianqi.com/?p=1894

2.HDOJ 2544 最短路
http://www.wutianqi.com/?p=1892

 

 

原文链接:http://www.cnblogs.com/tanky_woo/archive/2011/01/19/1939041.html

数据结构与算法——最短路径Dijkstra算法的C++实现

数据结构与算法——最短路径Dijkstra算法的C++实现
  • Linux_ever
  • Linux_ever
  • 2016年05月04日 13:26
  • 6272

求图中最短路径算法之Dijkstra算法——C++实现并优化

Dijkstra算法是一种比较经典的求图中最短路径算法,它是一种贪心算法,可以求出从源节点到图中其他所有节点的最短路径。适用范围:用于求有向或无向加权图中两点间的最短路径,其中边的权值不能为负。 最...
  • lrgdongnan
  • lrgdongnan
  • 2016年06月25日 17:11
  • 4411

Dijkstra迪杰斯特拉算法及C++实现

Dijkstra迪杰斯特拉算法及C++实现
  • mimi9919
  • mimi9919
  • 2016年04月22日 22:13
  • 6499

c++中关于最短路径问题的Dijkstra算法的实现

c++中关于最短路径问题的Dijkstra算法的实现,写得不好的请指正,火速修改
  • play_841266670
  • play_841266670
  • 2017年06月06日 20:05
  • 465

动态规划算法--最短路径问题

问题:从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径——最短路径。下面 将用Dijkstra算法解决最短路径问题。 最短路径有一个重要特性: 如果由起点A经过P点和H点...
  • xgf415
  • xgf415
  • 2016年09月25日 16:03
  • 5854

C++代码,数据结构-最短路径(两种情况)(迪杰斯特拉算法和弗洛伊德算法)

1.单源的,从有向图某个源点, 到其他点的最短路径 利用算法迪杰斯特拉算法; Dijkstra算法的基本思想: 一个辅助数组D[max_v];每个D[i]表示当前所知源点到vi的最短路径的长度 一个辅...
  • y519476132
  • y519476132
  • 2014年01月29日 23:32
  • 2768

最短路径的C++算法

  • 2015年03月11日 14:27
  • 1.06MB
  • 下载

Dijkstra 算法的 C/C++ 实现

Dijkstra算法 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,是广度优先算法的一种,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为...
  • chengonghao
  • chengonghao
  • 2016年08月28日 18:47
  • 1476

DijkStra最短路径的C++实现与输出路径

一个点(源点)到其余各个顶点的最短路径。也叫做“单源最短路径”Dijkstra。 Dijkstra的主要思想:每次找到离源点最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路...
  • u012577585
  • u012577585
  • 2015年04月13日 19:34
  • 4349

C++实现Dijkstra算法

#define _CRT_SECURE_NO_WARNINGS #include #include #include #include #include #include #include #incl...
  • qq_21555605
  • qq_21555605
  • 2015年06月17日 16:35
  • 610
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)
举报原因:
原因补充:

(最多只允许输入30个字)