单源最短路径Dijkstra算法

Dijkstra算法模板,邻接表实现,邻接表是数组模拟实现的

Dijkstra适用于有向图、无向图。

图中不能有负权值,有负权则用SPFA算法

#include<cstdio>
#include<cstring>

const int N=1000;
const int M=10000;

struct edge//边结构体
{
	int v,w,next;//边指向的顶点、边的权重、边指向节点的下一条边节点的下标
	edge(){}
	edge(int _v,int _w,int _next)
	{
		v=_v;
		w=_w;
		next=_next;
	}
} e[M*2];//储存着所有的边

int head[N],size;//下标表示顶点,值表示该顶点指向的边节点的下标,size记录插入的边的条数

void initi()
{
	memset(head,-1,sizeof(head));
	size=0;
}

void insert1(int u,int v,int w)//插入一胎有向边
{
	e[size]=edge(v,w,head[u]);
	head[u]=size++;
}

void insert2(int u,int v,int w)//插入一条无向边
{
	insert1(u,v,w);
	insert1(v,u,w);
}

int n,m;//顶点数、边数
int dis[N];//存储源点到每个点的最短距离
bool vis[N];//标记是否被访问过

void Dijkstra(int u)//u是起点
{
	memset(vis,false,sizeof(vis));
	memset(dis,0x3f,sizeof(dis));
	dis[u]=0;
	for(int i=0;i<n;i++)
	{
		int mind=100000000;
		int minj=-1;
		for(int j=1;j<=n;j++)
		{
			if(dis[j]<mind&&!vis[j])
			{
				mind=dis[j];
				minj=j;
			}
		}
		if(minj==-1) return;
		vis[minj]=true;
		for(int k=head[minj];k!=-1;k=e[k].next)
		{
			int v=e[k].v;
			int w=e[k].w;
			if(!vis[v]&&dis[minj]+w<dis[v]) dis[v]=dis[minj]+w;
		}
	}
}

int main()
{
	initi();
	int u,v,w;//起点、终点、权重
	scanf("%d%d",&n,&m);
	for(int i=0;i<m;i++)
	{
		scanf("%d%d%d",&u,&v,&w);
		insert2(u,v,w);//有向图则调用insert1();
	}
	Dijkstra(1);
	printf("%d",dis[n]);
	return 0;
}  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值