AVL树是最先发明的自平衡二叉查找算法,是平衡二叉树的一种。在AVL中任何节点的两个儿子子树的高度最大差别为1,所以它又被成为高度平衡树。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来平衡这棵树。
假设把AVL树构造过程中需要重新平衡的节点叫做α。由于任意节点最多有两个儿子,因此高度不平衡时,α点的两颗子树的高度差2。这种不平衡可能出现在下面这四种情况:
1) 对α的左儿子的左子树进行一次插入(左旋)
其中D是新插入的节点,红色节点K2是失去平衡的节点。需要对K1和K2进行左旋调整即将K1作为根,将K2作为K1的左子树,K1的右子树调整为K2的左子树。如下图所示
进行左旋变换
代码如下:
static Position SingleRotateWithLeft(Position K2)
{
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K1->Right = K2;
//更新节点的高度
return K1;
}
2)对α的左儿子的右子树进行一次插入(左右双旋)
左右双旋这里的左右指的是对α的左儿子的右子树进行插入时需要旋转。先对K1和K2进行右旋(跟第四种情况类似),然后再对K3和K2进行左旋,最终实现平衡。如下图所示
进行一次右旋进行一次左旋
代码如下:
static Position DoubleRotateWithLeft(Position K3)
{
K3->Left = SingleRotateWithRight(K3->Left);
return SingleRotateWithLeft(K3);
}
3)对α的右儿子的左子树进行一次插入(右左双旋)
右左双旋:先对K1和K2进行左旋,然后在对K2和K3进行右旋,最终实现平衡。如下图所示
进行一次左旋进行一次右旋
代码如下:
static Position DoubleRotateWithRight(Position K3)
{
K3->Right = SingleRotateWithLeft(K3->Right);
return SingleRotateWithRight(K3);
}
4)对α的右儿子的右子树进行一次插入(右旋)
将K2的右子树更改为K1的左子树,K1的左子树更改为K2即完成的右旋,如下图所示
进行右旋
代码如下:
static Position SingleRotateWithRight(Position K2)
{
Position K1;
K1 = K2->Right;
K2->Right = K1->Left;
K1->Left = K2;
//更新节点高度
return K1;
}
上面讲述了AVL树四种旋转情况,下面来实现一下AVL树。AVL树的实现跟上一章讲的二叉查找树相似,区别在于在插入和删除节点是需要对树进行调整以满足平衡条件。
avltree.h给出函数声明
typedef int ElementType;
#ifndef AVLTREE_H
#define AVLTREE_H
struct TreeNode
{
ElementType Element;
int Height;
struct TreeNode *Left;
struct TreeNode *Right;
};
typedef struct TreeNode *AvlTree;
typedef struct TreeNode *Position;
AvlTree MakeEmpty(AvlTree T);
AvlTree Insert(ElementType X, AvlTree T);
Position Find(ElementType X ,AvlTree T);
Position FindMax(AvlTree T);
Position FindMin(AvlTree T);
#endif
avltree.c函数实现
#include "fatal.h"
#include "avltree.h"
AvlTree MakeEmpty(AvlTree T)
{
if(T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
static int Height(Position P)
{
if(P == NULL)
return -1;
else
return P->Height;
}
static int Max(int Lhs, int Rhs)
{
return Lhs > Rhs ? Lhs : Rhs;
}
static Position SingleRotateWithLeft(Position K2)
{
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K1->Right = K2;
K1->Height = Max(Height(K1->Left), Height(K1->Right)) + 1;
K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
return K1;
}
static Position SingleRotateWithRight(Position K2)
{
Position K1;
K1 = K2->Right;
K2->Right = K1->Left;
K1->Left = K2;
K1->Height = Max(Height(K1->Left), Height(K1->Right)) + 1;
K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
return K1;
}
static Position DoubleRotateWithLeft(Position K3)
{
K3->Left = SingleRotateWithRight(K3->Left);
return SingleRotateWithLeft(K3);
}
static Position DoubleRotateWithRight(Position K3)
{
K3->Right = SingleRotateWithLeft(K3->Right);
return SingleRotateWithRight(K3);
}
AvlTree Insert(ElementType X, AvlTree T)
{
if(T == NULL)
{
T = (Position)malloc(sizeof(struct TreeNode));
if(T == NULL)
FatalError("Out of space");
T->Element = X;
T->Height = 0;
T->Left = T->Right = NULL;
}
else if(X < T->Element)//左子树插入新节点
{
T->Left = Insert(X, T->Left);
if(Height(T->Left) - Height(T->Right) == 2)//左子树插入节点所以高度是左子树高于右子树
{
if(X < T->Left->Element)//对α的左儿子的左子树进行一次插入,需要左旋
T = SingleRotateWithLeft(T);
else //对α的左儿子的右子树进行一次插入,需要双旋
T = DoubleRotateWithLeft(T);
}
}
else if(X > T->Element)//右子树插入新节点
{
T->Right = Insert(X, T->Right);
if(Height(T->Right) - Height(T->Left) == 2)//因为是右子树插入新节点,所以高度是右子树高于左子树
{
if(X > T->Right->Element)//对α的右儿子的右子树进行一次插入,需要右旋
T = SingleRotateWithRight(T);
else//对α的右儿子的左子树进行一次插入,需要双旋
T = DoubleRotateWithRight(T);
}
}
T->Height = Max(Height(T->Left), Height(T->Right)) + 1;
return T;
}
Position Find(ElementType X, AvlTree T)
{
if(T == NULL)
return NULL;
if(X < T->Element)
return Find(X, T->Left);
else if(X > T->Element)
return Find(X, T->Right);
else
return T;
}
Position FindMin(AvlTree T)
{
if(T == NULL)
return NULL;
else if(T->Left == NULL)
return T;
else
return FindMin(T->Left);
}
Position FindMax(AvlTree T)
{
if(T == NULL)
return NULL;
else if(T->Right == NULL)
return T;
else
return FindMax(T->Right);
}
testavl.c测试AVL树的实现
#include "avltree.h"
#include <stdio.h>
#include <stdlib.h>
void InOrder(AvlTree T)
{
if(T != NULL)
{
InOrder(T->Left);
printf("%d ", T->Element);
InOrder(T->Right);
}
}
void PreOrder(AvlTree T)
{
if(T != NULL)
{
printf("%d ", T->Element);
PreOrder(T->Left);
PreOrder(T->Right);
}
}
int main(void)
{
AvlTree T;
Position P;
int i;
T = MakeEmpty(NULL);
for(i = 1; i <= 7; i++)
T = Insert(i, T);
for(i = 16; i >= 10; i--)
T = Insert(i, T);
T = Insert(8, T);
T = Insert(9, T);
printf("Root: %d\n", T->Element);
printf("InOrder: ");
InOrder(T);
printf("\nPreOrder: ");
PreOrder(T);
putchar('\n');
system("Pause");
return 0;
}
测试:首先插入1到7,然后插入16到10,最后插入8和9。AVL树的应该为下图所示
测试结果如下图所示