Linked List Cycle I和II 以及扩展

单向链表中关于环的问题
首先我们来看一张图片(转):

如图所示:链表的起点为X,环的起点为Y,相遇点为Z,则环的长度为L=b+c。

利用快慢指针,一个fast每次走两步,另一个slow走一步,如果有环两者就会相遇;因此,两者第一次相遇时有关系成立:2*(a+b)=a+b+c+b,则a=c;

(1)判断当前链表中是否存在环?(Linked List Cycle I)
判断fast是否有等于slow的情况。
/*
	 * 判断单链表中是否存在环!
	 * 利用快慢指针,一个每次走两步,另一个走一步,如果有环两者就会相遇;
	 */
	static public boolean hasCycle(ListNode head) {
        boolean flag=false;
        ListNode fast=head;
        ListNode slow=head;
        while(true){
        	if(fast==null||fast.next==null)
        		return false;        	
        	slow=slow.next;
        	fast=fast.next.next;
        	if(fast==slow){
        		flag=true;
        		break;
        	}
        }
        return flag;
    }

(2)判断当前链表中环的长度?
环的长度L=a+b;即第一次相遇时,slow走的长度。

(3)判断当前链表中环的起点?(Linked List Cycle II)
当两者相遇时,fast从X走,slow从Z走,每次走一步,再次相遇点就是环的起始点。
<span style="font-size:18px;">/*
	 * 判断单链表中是否存在环,返回环的起点!
	 * 利用快慢指针,一个每次走两步,另一个走一步,如果有环两者就会相遇;
	 * 一个从头开始走,一个在相遇点走,两者再次相遇的地方就是环的起点。
	 */
	static public ListNode detectCycle(ListNode head) {
        ListNode fast=head;
        ListNode slow=head;
        while(true){
        	if(fast==null||fast.next==null)
        		return null;        	
        	slow=slow.next;
        	fast=fast.next.next;
        	if(fast==slow){
        		break;
        	}        	
        }
        fast=head;
        while(fast!=slow){
        	fast=fast.next;
        	slow=slow.next;
        }
        return fast;
    }</span>


(4)如何将当前链表中的环消除?
将环中指向Y的结点的next该为null。

(5)判断两个链表是否存在交点?
1)先判断两个链表中是否有环,如果一个没有,另一个有,则肯定不相交;2)如果两者都没有环,则判断两个链表的尾部结点是否相同;3)两者都有环,找到环的起点,从环的起点遍历两者是否有公共点。

【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值