CSV标准格式

1. CSV的全称是叫Comma Separated Value
2. CSV的MIME类型是text/csv
3 CSV文件中的每一行数据,作为一行记录,也就是一个条目(99%的情况,排除有些换行数据,下面会提到)
4. CSV文件的每一行数据后面跟着(回车+换行符)即CRLF,但有些资料中也提到了单个CR或者LF均可,但标准rfc文档中用到的是CR+LF
5. 文件第一行可以是标题行,这个用到的不多
6. 每行数据中,每个字段之间均必须用半角逗号comma进行分隔,这也是为什么叫Comma Separated的来由,如果有标题行,那么标题之间也使用逗号分隔
7 每行的最后一个字段后应该只有CRLF,不应该再有逗号
8. 最后一行后面可以不加CRLF
9. 在逗号分隔开的每个字段中,前面的空白和后面的空白会被忽略,但单个字段内部的空白会被保留,例如,  aaa,   bbb  bbb   ,ccc  我们看到有三个字段,其中第二个字段前面,中间,后面均有空白,但CSV解析器应该只保留中间的空白,即bbb  bbb,类似于java中的trim方法
10. 如果某个字段中间有回车换行之类的字符,可以用双引号来引用,例如: 

"aaa","b CRLF   
 bb","ccc" CRLF   
 zzz,yyy,xxx  

    那么可以判断出第二个字段之间内部存在一个回车换行符,由于使用双引号分隔,他们b 和 bb 被链接成一个字段
11. 字段本身推荐使用双引号来引用,但MS的excel默认是不会对字段加" "的
12. 转义字符逗号(,),当字段中存在逗号是,是必须要将这个字段用""引用起来的
13. 转移字符双引号("),当字段中存在双引号时,必须连续用两个双引号来进行转义

转自:http://xinglu.iteye.com/blog/1167826

<think>好的,用户想知道如何用Python读取和处理CSV文件的数据格式。我需要根据提供的引用资料来组织回答。首先,用户提到了几个引用,其中引用1和2是关于读取大的CSV文件以及基本方法,引用3则给出了具体的代码示例,包括处理数据和编码问题。 首先,我应该分步骤讲解。第一步是读取CSV文件,可以用Python内置的open函数和csv模块。需要提到两种方法:普通读取和csv.reader。引用2提到这两种方法,所以需要引用到。然后,处理大数据文件的话,可能需要逐行读取或者分块处理,引用1和3中的例子用到了with语句和逐行处理,可以引用这里。 接下来是处理数据部分,比如筛选特定条件的数据,像引用3中的例子,检查日期和成交额,并写入新文件。这部分需要详细说明,尤其是编码问题,比如使用'gb18030'来处理中文编码,这在引用3中有提到,必须指出。 另外,用户可能关心如何处理不同的编码格式,比如utf-8和gb18030的区别,以及为什么需要指定encoding参数。需要解释常见的中文编码问题,避免出现乱码。 最后,生成相关问题的时候,要考虑用户可能的后续疑问,比如处理大文件时的内存问题,或者如何写入CSV,或者如何处理不同的分隔符。引用3中的例子已经涉及写入文件,所以相关问题可以包括这些点。 要注意回答结构清晰,分步骤说明,代码示例要正确,并且引用对应的来源。确保每个步骤都有对应的引用支持,比如使用csv.reader引用自引用2和3,处理大数据引用自引用1和3,编码问题引用自引用3。 可能还需要提醒用户注意文件路径是否正确,以及数据类型转换,比如将字符串转换为数值进行比较,如引用3中的int(float(row[11]))。这些细节能帮助用户避免常见错误。 总结回答结构: 1. 读取CSV文件的方法(普通读取和csv模块) 2. 处理大文件的注意事项 3. 数据处理示例(筛选条件) 4. 编码问题的重要性 5. 代码示例整合 最后生成相关问题,如性能优化、不同编码处理、其他格式导出等。</think>### Python读取和处理CSV文件的步骤及示例 #### **1. 读取CSV文件** Python提供了两种主要方式读取CSV文件: - **方法1:使用内置`open`函数逐行读取** 适合简单场景,但需手动处理分隔符和数据类型: ```python with open('data.csv', 'r', encoding='utf-8') as f: for line in f: row = line.strip().split(',') print(row) ``` - **方法2:使用`csv`模块** 更规范且能自动解析逗号分隔符,支持复杂格式(如含引号的字段): ```python import csv with open('data.csv', 'r', encoding='gb18030') as rf: reader = csv.reader(rf) headers = next(reader) # 读取表头 for row in reader: print(row) # 每行数据以列表形式返回 ``` 引用[^2]指出,此方法能正确处理CSV标准格式,避免手动解析错误。 #### **2. 处理大文件的优化** 若文件较大(如超过内存容量),需逐行处理或分块读取: ```python with open('large.csv', 'r', encoding='gb18030') as rf: reader = csv.reader(rf) headers = next(reader) for row in reader: # 按条件处理每一行 if int(row[2]) > 1000: process_data(row) ``` 引用[^1]强调,逐行读取可减少内存占用,适合大数据场景。 #### **3. 数据处理与筛选** 根据需求对数据进行过滤或转换。例如,筛选2022年成交额超过1亿的记录: ```python import csv with open('000001.csv', 'r', encoding='gb18030') as rf: reader = csv.reader(rf) headers = next(reader) with open('filtered.csv', 'w', encoding='utf-8') as wf: writer = csv.writer(wf) writer.writerow(headers) for row in reader: if row[0] < '2022-01-01': break # 假设数据按日期升序排列 if int(float(row[11])) >= 100000000: writer.writerow(row) ``` 引用[^3]展示了如何结合日期和数值条件筛选数据,并注意编码格式的转换(`gb18030`到`utf-8`)。 #### **4. 编码问题处理** - **常见编码格式**:中文CSV文件可能使用`gbk`、`gb18030`或`utf-8`编码,若读取时出现乱码,需尝试不同编码。 - **示例**:`encoding='gb18030'`可兼容更多中文字符。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值