看贾志鹏线性筛的时候想起来的。
我有一个繁琐的证明- -。
证明ϕ(pm)=p×ϕ(m),p为素数,m∈Z.
设
m=pα⋅m′,α,m′∈N,(pα,m′)=1.
那么
ϕ(m)=ϕ(m′)⋅ϕ(pα).
而
ϕ(pα)=(p−1)pα−1
因此
ϕ(m)=ϕ(m′)⋅((p−1)pα−1).
又因为
n=p⋅m=m′⋅pα+1
显然m′和pα+1互素,所以
ϕ(n)=ϕ(m′)⋅ϕ(pα+1)=ϕ(m′)⋅p⋅(p−1)⋅pα−1=ϕ(m)⋅p
证毕。
本文详细证明了当p为素数且m属于整数集时,欧拉函数ϕ(pm)等于p乘以ϕ(m)这一性质。通过设定m的形式并利用欧拉函数的基本性质完成了证明。
看贾志鹏线性筛的时候想起来的。
我有一个繁琐的证明- -。
证明ϕ(pm)=p×ϕ(m),p为素数,m∈Z.
设
您可能感兴趣的与本文相关的镜像
Dify
Dify 是一款开源的大语言模型(LLM)应用开发平台,它结合了 后端即服务(Backend as a Service) 和LLMOps 的理念,让开发者能快速、高效地构建和部署生产级的生成式AI应用。 它提供了包含模型兼容支持、Prompt 编排界面、RAG 引擎、Agent 框架、工作流编排等核心技术栈,并且提供了易用的界面和API,让技术和非技术人员都能参与到AI应用的开发过程中

被折叠的 条评论
为什么被折叠?