数论 - 欧拉筛法(线性筛)的解释

网上已经有很多关于欧拉筛法实现的文章了:

https://www.cnblogs.com/tmzbot/p/4006032.html

http://www.cnblogs.com/zhuohan123/p/3233011.html

https://blog.csdn.net/chczy1/article/details/80327323

http://www.cnblogs.com/A-S-KirigiriKyoko/articles/6034572.html 等等

但其中对为什么欧拉筛法是线性的,以及其中关键步骤的解释都或多或少有些问题。此文就是对上述问题作出的重新解释。

先贴一个别人家的欧拉筛法的程序:http://www.cnblogs.com/A-S-KirigiriKyoko/articles/6034572.html

/*求小于等于n的素数的个数*/
#include<stdio.h>
#include<string.h>
using namespace std;
int main()
{
    int n, cnt = 0;
    int prime[100001];//存素数 
    bool vis[100001];//保证不做素数的倍数 
    scanf("%d", &n);
    memset(vis, false, sizeof(vis));//初始化 
    memset(prime, 0, sizeof(prime));
    for(int i = 2; i <= n; i++)
    {
        if(!vis[i])//不是目前找到的素数的倍数 
        prime[cnt++] = i;//找到素数~ 
        for(int j = 0; j<cnt && i*prime[j]<=n; j++)
        {
            vis[i*prime[j]] = true;//找到的素数的倍数不访问 
            if(i % prime[j] == 0) break;//关键!!!! 
        }
    }
    printf("%d\n", cnt);
    return 0;
}

其中注释为 “//关键!!!!” 的句子的解释大概如下

首先,任何合数都能表示成多个素数的积。所以,任何的合数肯定有一个最小质因子。我们通过这个最小质因子就可以判断什么时候不用继续筛下去了。

​ 当i是prime[j]的整数倍时(i % prime[j] == 0),i*prime[j+1]肯定被筛过,跳出循环。

​ 因为i可以看做prime[j]*某个数, i*prime[j+1]就可以看做 prime[j]*某个数*prime[j+1] 。而 prime[j] 必定小于 prime[j+1],
所以 i*prime[j+1] 必定已经被 prime[j]*某个数 筛掉,就不用再做了

这里是关键,如果i是一个合数(这当然是允许的)而且i mod prime[j] = 0。那么跳出,因为i*prime[ (- over -)j ]一定已经被筛去了,被一个素因子比i小的数

其中 i * prime[ j + k ] (k >= 1) 已经被筛去,不用再做的解释实际上是错的,实际上不是已经被筛去,而是将被后面的数筛去。但整体思路中让每个数都被其最小质因数筛的解释是对的。

让我们来看一个栗子:假设2, 3, 4, 5, 6, … 12

请问12在什么时候被筛去的呢? 按上述解释以及程序计算,在i == 4时,质数表中已有2, 3,可以4 * 3 == 12. 后续 i == 6时, 质数表2, 3, 5,也可以 6 * 2 == 12 筛去12.

跟着程序算一次便知,i = = 4时只筛去了8,为何不筛去12,因为12的最小质因数为2,由4 mod 2 == 0也可以看出4不是最小质因数,与2配对的因数6将在后面筛去12,这样才是用最小质因数去筛。

而线性的证明,只需由上述例子中看出每个被筛去的数都是唯一的由 最小质因数(其实也就是最小正因数,易证)配对的因数(相应的最大因数)筛去,每个数只被筛去一次,故为O(n)。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值