POJ 1442 Road Construction 最小路径

原创 2015年11月17日 18:43:19
E - Road Construction
Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

Input

The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

Output

One line, consisting of an integer, which gives the minimum number of roads that we need to add.

Sample Input

Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10

Sample Input 2
3 3
1 2
2 3
1 3

Sample Output

Output for Sample Input 1
2

Output for Sample Input 2
0

一个有向无环图,让你用最少的士兵把这个图遍历,每个士兵只能沿一跳路走

ACcode:

#pragma warning(disable:4786)//使命名长度不受限制
#pragma comment(linker, "/STACK:102400000,102400000")//手工开栈
#include <map>
#include <set>
#include <queue>
#include <cmath>
#include <stack>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define rd(x) scanf("%d",&x)
#define rd2(x,y) scanf("%d%d",&x,&y)
#define rds(x) scanf("%s",x)
#define rdc(x) scanf("%c",&x)
#define ll long long int
#define maxn 205
#define mod 1000000007
#define INF 0x3f3f3f3f //int 最大值
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define MT(x,i) memset(x,i,sizeof(x))
#define PI  acos(-1.0)
#define E  exp(1)
using namespace std;
bool bmap[maxn][maxn];
bool bmask[maxn];
int pre[maxn];
int loop,n,m,x,y;
void init(){
    MT(bmap,0);
    MT(bmask,0);
    MT(pre,-1);
}
int findpath(int u){
    FOR(i,1,n)
        if(bmap[u][i]&&!bmask[i]){
            bmask[i]=1;
            if(pre[i]==-1||findpath(pre[i])){
                pre[i]=u;
                return 1 ;
            }
        }
    return 0;
}
int Maxmatch(){
    int res(0);
    FOR(i,1,n){
        MT(bmask,false);
        res+=findpath(i);
    }
    return res;
}
int main(){
    rd (loop);
    while(loop--){
        rd(n);rd(m);init();
        FOR(i,1,m){
            rd2(x,y);
            bmap[x][y]=1;
         }
        printf("%d\n",n-Maxmatch());
    }
    return 0;
}
/*
2
4
3
3 4
1 3
2 3
3
3
1 3
1 2
2 3
*/



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

CF 330B Road Construction 构造路径 水题

B. Road Construction time limit per test 2 seconds memory limit per test 256 megabytes input s...

POJ 3352 Road Construction (边双连通分量)

题目类型  多源多汇最大流 题目意思 给出 ns 个供电点最大提供的电量 和 nt 个用电点最大的用电量 以及中间一些运输线的最大容纳的电量 问最多有多少电量从供电点运输到用电点...

POJ 3352 Road Construction

Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10183   Accepte...

POJ3352Road Construction(边的双连通+强连通缩点)

Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8673 ...

Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)

在说Tarjan算法解决桥和边连通分量问题之前我们先来回顾一下Tarjan算法是如何求解强连通分量的。       Tarjan算法在求解强连通分量的时候,通过引入dfs过程中对一个点访问的顺序dfs...

POJ-3352 Road Construction(边双连通分量+缩点)

It's almost summer time, and that means that it's almost summer construction time! This year, the go...
  • yo_bc
  • yo_bc
  • 2017-08-05 16:33
  • 56

poj 3352 Road Construction 双连通图

大致题意: 某个企业想把一个热带天堂岛变成旅游胜地,岛上有N个旅游景点,任意2个旅游景点之间有路径连通(注意不一定是直接连通)。而为了给游客提供更方便的服务,该企业要求道路部门在某些道路增加一些设施...
  • wr132
  • wr132
  • 2015-12-05 12:52
  • 336

POJ3352-Road Construction

转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6762370       大致题意: 某个企业想把一个热带天堂...

poj 3352 Road Construction 双连通分量+缩点 模板

题目链接:http://poj.org/problem?id=3352 题意:给出一个没有重边的无向图,求至少加入几条边使整个图成为一个边双连通分量。 双连通分量模板,把图中所有的边双连通...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)