Alex_McAvoy的博客

I'm not there,I'm not die.

排序:
默认
按更新时间
按访问量

学习笔记

C++ 学习笔记:点击这里 Linux 学习笔记:点击这里 Python 学习笔记:点击这里 Java 学习笔记:点击这里 JavaWeb 学习笔记:点击这里

2018-09-12 20:22:01

阅读数:195

评论数:0

ACM 训练题解

【HDU-图论训练】题解:点击这里 【POJ-强化训练1】题解:点击这里 【POJ-强化训练2】题解:点击这里 【POJ-强化训练3】题解:点击这里 【POJ-强化训练4】题解:点击这里 【信息学奥赛一本通】:点击这里 【洛谷】:点击这里 HUD、POJ、CF 等网站题解请点击左侧个...

2018-05-14 19:20:34

阅读数:312

评论数:0

数据结构

【概述】 数据结构是计算机存储、组织数据的方式。是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。 【常用】 数组的前缀与后缀:点击这里 栈:点击这里 队列:点击这里 链表:点击...

2018-04-19 20:29:43

阅读数:216

评论数:0

算法合集

【基础算法】 模拟算法:点击这里 数据排序:点击这里 高精度计算:点击这里 递推算法:点击这里 递归算法:点击这里 贪心算法:点击这里 分治法:点击这里 【进阶算法】 数据查找:点击这里 数据搜索:点击这里 动态规划:点击这里 图论算法:点击这里 【数学相关】 数论:点击这...

2018-04-12 20:31:16

阅读数:539

评论数:0

【洛谷】题解目录

#1 新手村 关卡1-1 洛谷的第一个任务     超级玛丽游戏(洛谷-P1000):点击这里 A+B Problem(洛谷-P1001):点击这里 小玉买文具(洛谷-P1421):点击这里 小鱼的游泳时间(洛谷-P1425):点击这里 关卡1-2 顺序与分支 小玉家的电费(洛谷-P1...

2018-02-14 01:34:32

阅读数:1308

评论数:2

【信息学奥赛一本通】题解目录

OJ网站:点击这里 第一部分 C++语言 第一章 C++语言入门         T1001 Hello,World!    点击这里     T1002 输出第二个整数    点击这里     T1003 对齐输出    点击这里     T1004 字符三角形    点击这里  ...

2018-02-14 00:58:54

阅读数:78532

评论数:4

Currency Exchange(POJ-1860)

Problem Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencie...

2018-11-11 14:01:53

阅读数:58

评论数:0

zz's Mysterious Present(HDU-2145)

Problem Description There are m people in n cities, and they all want to attend the party which hold by zz. They set out at the same time, and they ...

2018-11-11 13:58:11

阅读数:60

评论数:0

Ford 算法与 SPFA

【Ford 算法】 1.概述 Bellman-Ford算法适用于计算单源最短路径,即:只能计算起点只有一个的情况。 其最大特点是可以处理存在负边权的情况,但无法处理存在负权回路的情况。 其时间复杂度为:O(N*E),其中,N 是顶点数,E 是边数。 2.算法描述 设起点为 s,dis[...

2018-11-10 00:19:09

阅读数:24

评论数:0

训练日志 2018.11.7

原计划的图的遍历和拓扑排序看完了,顺便把 Floyd 和 Dijkstra 看完了,这周计划是 Ford、SPFA、并查集以及 2-SAT 问题 学长学姐去 ICPC 拿了块牌回来,羡慕 自己队出去比赛的次数是 17 级里最多的,但一直打铁一直让教练失望,还是能力不够,现在队伍少了个人,也找不...

2018-11-07 23:22:54

阅读数:25

评论数:0

Lost Array(CF-1043B)

Problem Description Bajtek, known for his unusual gifts, recently got an integer array x0,x1,…,xk−1. Unfortunately, after a huge array-party with h...

2018-11-07 23:11:57

阅读数:22

评论数:0

Elections(CF-1043A)

Problem Description Awruk is taking part in elections in his school. It is the final round. He has only one opponent — Elodreip. The are nn students...

2018-11-07 23:07:20

阅读数:20

评论数:0

畅通工程续(HDU-1874)

Problem Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。 现在,已知起点和终点,请你计算出要从起点到终点,最短需要行...

2018-11-07 22:57:19

阅读数:12

评论数:0

Til the Cows Come Home(POJ-2387)

Problem Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for t...

2018-11-07 22:51:00

阅读数:19

评论数:0

MPI Maelstrom(POJ-1502)

Problem Description BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distributed shared memory machine with...

2018-11-07 22:38:08

阅读数:11

评论数:0

Dijkstra 算法

【概述】 Dijkstra 算法是单源最短路径算法,即计算起点只有一个的情况到其他点的最短路径,其无法处理存在负边权的情况。 其时间复制度是:O(N*N),N 是顶点数 【算法描述】 设起点为 s,dis[v] 表示从 s 到 v 的最短路径,pre[v] 为 v 的前驱结点,vis[v]...

2018-11-06 22:12:36

阅读数:26

评论数:0

Floyd 算法

【概述】  Floyd 算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法。 其最大特点是可以计算出现负边权时的最短路,实际应用中,很多题目不是问如何用 Floyd 求最短路,而且用 Floyd 的动态规划思想来解决类似 Floyd 的问题。 其时间复杂度是 O(N*N*...

2018-11-06 11:23:25

阅读数:27

评论数:0

Following Orders(POJ-1270)

Problem Description Order is an important concept in mathematics and in computer science. For example, Zorn's Lemma states: ``a partially ordered se...

2018-11-04 16:19:20

阅读数:14

评论数:0

确定比赛名次(HDU-1285)

Problem Description 有N个比赛队(1<=N<=500),编号依次为1,2,3,。。。。,N进行比赛,比赛结束后,裁判委员会要将所有参赛队伍从前往后依次排名,但现在裁判委员会不能直接获得每个队的比赛成绩,只知道每场比赛的结果,即P1赢...

2018-11-04 16:11:23

阅读数:18

评论数:0

Genealogical tree(POJ-2367)

Problem Description The system of Martians' blood relations is confusing enough. Actually, Martians bud when they want and where they want. They gat...

2018-11-04 16:00:42

阅读数:60

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭