题目:下列哪个不属于常用的文本分类的特征选择算法?
卡方检验值
互信息
信息增益
主成分分析(不属于)
----------------------------------------------------------------------------------------------------------------
机器学习算法的空间、时间复杂度依赖于输入数据的规模。
维度规约(Dimensionality reduction)则是一种被用于降低输入数据维数的方法。分为两类:
特征选择(feature selection):从原始的d维空间中,选择为我们提供信息最多的k个维(这k个维属于原始空间的子集)——保留原空间信息
特征提取(feature extraction):将原始的d维空间映射到k维空间中(新的k维空间不输入原始空间的子集)——构造新空间<

本文介绍了在文本挖掘和分类中,特征选择的重要性以及常用的几种特征选择方法,包括文档频率(DF)、互信息(MI)、卡方检验(CHI)和加权对数似然比(WLLR)等,探讨了如何衡量特征词与文档类别的关联度。
最低0.47元/天 解锁文章
2135

被折叠的 条评论
为什么被折叠?



