机器学习:文本挖掘之特征选择

本文介绍了在文本挖掘和分类中,特征选择的重要性以及常用的几种特征选择方法,包括文档频率(DF)、互信息(MI)、卡方检验(CHI)和加权对数似然比(WLLR)等,探讨了如何衡量特征词与文档类别的关联度。

题目:下列哪个不属于常用的文本分类的特征选择算法?

卡方检验值

互信息

信息增益

主成分分析(不属于)

----------------------------------------------------------------------------------------------------------------

文本挖掘之特征选择

机器学习算法的空间、时间复杂度依赖于输入数据的规模。

维度规约(Dimensionality reduction)则是一种被用于降低输入数据维数的方法。分为两类:

特征选择(feature selection):从原始的d维空间中,选择为我们提供信息最多的k个维(这k个维属于原始空间的子集)——保留原空间信息

特征提取(feature extraction):将原始的d维空间映射到k维空间中(新的k维空间不输入原始空间的子集)——构造新空间<

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值