机器学习笔记(2)——感知机

Perceptron(感知机)

感知机是二分类的线性分类器,属于判别模型。由Rosenblatt在1957年提出,是神经网络和支持向量机(SVM)的基础。感知机本身相当于神经网络中的一个神经元,只能进行简单的线性分类。感知机的学习目标是通过训练数据得到线性划分的超平面。为此,引入基于分类误差的损失函数,利用梯度下降法对损失函数进行极小化,来求解感知机模型。

1.感知机模型

定义:假设输入空间(特征空间)是 χRn ,输出空间是 Y={ +1,1} .输入 xχ 是样本的特征向量,对应的输出 yY 是样本的类别。输入空间到输出空间的映射模型为:

f(x)=sign(wx+b)

其中 x 是输入样本的特征向量, w,b 是感知机的模型参数, w 是权值, b 是偏置,都需要通过学习得到。 wx w x 的内积。

2.感知机学习策略

线性可分定义:给定一个数据集

T={ (x1,y1),(x2,y2),,(xN,yN)}

其中 xi 是样本特征向量, yi 是样本对应类别,如果存在某个超平面 S:wx+b=0 能够将数据集的正样本和负样本全部正确地划分到超平面的两侧,则样本 T 是线性可分数据集。
假设数据集是线性可分的,感知机的目标就是求得一个能够将所有样本正确分类的超平面,即学习出前面感知机模型的参数 wb 。为了得到最佳参数,我们需要确定一个学习策略,即定义一个合适的损失函数,并求得 wb 使损失函数最小。在感知机模型中,一般定义误分类点 xi 到超平面的距离为损失函数。首先,定义点到超平面的距离:
1w|wxi+b|

对于误分类数据 (xi,yi) 有:
yi(wxi+b)>0

即预测类别 wxi+b) 和实际类别 yi 总是相反,因此可以定义误分类点 (xi,yi) 到超平面的距离为:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值