- 博客(4)
- 收藏
- 关注
原创 2020-12-01
统计学习方法——朴素贝叶斯法(Naive Bayes) 贝叶斯公式 首先回顾一下贝叶斯公式: 条件概率:, 其中,为事件A在另一个事件B已发生条件下的概率, 为A,B同时发生的概率。 如果A,B相互独立,。 由条件概率公式可以推出,. 下面是全概率公式: 如果事件组 满足 1.....两两互斥,即 ,i≠j , i,j=1,2,....,且 2. ,则称事件组,...是样本空间Ω的一个划分 ...
2020-12-07 22:36:52 178 1
原创 统计学习方法——k近邻法
统计学习方法——k近邻法 算法描述 k近邻算法是一种基本分类与回归方法。李航老师的书中只讨论了分类问题。 k近邻算法简单直观: (1)给定一个训练数据集 (2)对于新的输入实例,在训练数据集中找到与该实例最邻近的k个实例 (3)这k个实例多数属于某个类,就将该输入实例分到这个类中 算法3.1(k近邻法)...
2020-11-28 16:55:42 729
原创 感知机——对偶形式
感知机——对偶形式 基本想法 对偶就是从不同角度解答相似问题,但解相同。 在前面我们将和设置为0,对误分类点通过 ...
2020-11-26 16:12:46 1045 1
原创 统计学习方法——感知机
统计学习方法——感知机 感知机(perceptron)是二类分类的线性分类模型,输入为实例的特征向量,输出为实例的类别,曲+1和-1二值。感知机对应与输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。 2.1 感知机模型 2.2.1 数据集的线性可分性 上述定义通俗来说,假如在二维平面,有一条直线可以把两类数据分开,就是线性可分数据集,分不开就是线性不可分 如图2.1 2.2.2 感知机学习策略 输入空间到任意一点到超平面S...
2020-11-19 10:26:56 338
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人