图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法)

本文介绍了最短路径算法中的迪杰斯特拉算法和弗洛伊德算法。迪杰斯特拉算法通过初始化、选择路径长度最小的终点、修改最短路径来逐步求解,而弗洛伊德算法则通过逐步计算中间顶点不超过k的最短路径矩阵来找到所有顶点间的最短路径。这两种算法不仅适用于带权有向图,也适用于带权无向图。
一:
最短路径算法
1. 迪杰斯特拉算法
2. 弗洛伊德算法
二:
1. 迪杰斯特拉算法
从源点到其余各点的最短路径
最短路径的长度递增 的次序求得各条 路径
路径长度最短 的最短路径的特点:
在这条路径上, 必定只含一条弧 ,并且这条 弧的 权值最小
下一条 路径长度次短 的最短路径的特点:
它只可能有两种情况:或是 直接从源点到该 ( 只含一条弧 ) 或者是 从源点经过顶点 v 1 ,再到达该顶点 ( 由两条弧组成 )
再下一条 路径长度次短 的最短路径的特点 :
它可能有三种情况:或者是 直接从源点到该 ( 只含一条弧 ) 或者是 从源点经过顶点 v 1 ,再到达该顶点 ( 由两条弧组成 ) ;或者是 从源点经过顶点 v 2 ,再到达该顶点。
其余最短路径的特点:
它或者是 直接从源点到该点 ( 只含一条弧 ) 或者是 从源点经过已求得最短路径的顶点, 再到达该顶点
迪杰斯特拉算法
算法:
(a) 初始化: 用起点v到该顶点w的直接边(弧)初始化最短路径,否则设为∞;
(b) 从未求得最短路径的终点中选择路径长度最小的终点u:即求得v到u的最短路径;
(c) 修改最短路径:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值