【概率DP入门】

本文探讨了在信息学竞赛中解决概率和期望问题的常见方法,包括直接计算、动态规划、迭代和概率-期望系统。文章介绍了概率和期望的基本运算,并通过实例详细解析了各种方法的应用,旨在帮助读者掌握解决此类问题的技巧。
摘要由CSDN通过智能技术生成

http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710606.html

有关概率和期望问题的研究

摘要

在各类信息学竞赛中(尤其是ACM竞赛中),经常出现一些与概率和期望有关的题目。这类题目需要较高的数学水平和一定的算法技巧,必须经过仔细分析,选择合适的数学模型和算法才能顺利的解决问题。本文就对这类题目的一些常见方法进行了研究。

数学基础

这里写的数学基础是有关概率和期望的一点简单的计算法则,虽然我们都很熟悉,但是有时也可能会忘记使用,所以在这里列出来,也作为以后内容的基础。

概率的运算

Ø 两个互斥事件,发生任一个的概率等于两个事件的概率和

Ø 对于不相关的事件或者分步进行的事件,可以使用乘法原则。

Ø 对于一般情况p(A+B)=p(A)+p(B)-p(AB)

期望的运算

Ø E(φ)= ΣφiPi,这是期望的定义,其中φi是一个取值,而Pi是取这个值的概率

Ø 期望有“线性”,也就是说对于不相关的两个随机变量φ和ξ,E(φ±ξ)=E(φ)±E(ξ);E(φξ)=E(φ)E(ξ);E(φ/ξ)=E(φ)/E(ξ)

Ø 在某些情况下,期望可以表示成一个无穷的等比数列,然后利用极限的思想来求。

当然,这些只是最基础的知识,要解决好概率和期望的问题,还需要掌握一些组合数学的知识。

常用方法

方法1 直接计算

这种方法说起来很简单,就是推导出一个数学公式,然后通过程序来计算这个式子的值。这样的题目在与概率和期望有关的题目中比例不小,但是由于它们大都需要一定的组合数学基础,而一旦推导出公式,对算法的要求并不太高,而时间复杂度往往也比较低,所以这类问题不是本文的重点。有关内容可以在任何一本组合数学书中学到。

例一 百事世界杯之旅[1]

 “……在2003年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字。只要凑齐所有百事球星的名字,就可以参加百事世界杯之旅的抽奖活动,获取球星背包、随身听,更可以赴日韩观看世界杯。还不赶快行动!……”

你关上电视,心想:假设有n个不同球星的名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所有的名字呢?

输入输出要求

输入一个数字n,2≤n≤33,表示不同球星名字的个数。                                                            

输出凑齐所有的名字平均需要购买的饮料瓶数。如果是一个整数则直接输出。否则就用下面样例中的格式分别输出整数部分和小数部分。分数必须是不可约的。

样例输入和输出

输入

输出

2

3

5

          5

11—------

         12

17

       340463

58 -----------------

        720720



评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值