图像几何变换(缩放、旋转)中的插值算法

转载 2002年11月25日 09:31:00

这是我在一些 数字图像与图形处理 方面的书上面看见的,书上说的比较零散,我稍微整理了一下

 

实践已证明,插值算法对于缩放比例较小的情况是完全可以接受的,令人信服的。一般的,缩小0.5倍以上或放大3.0倍以下,对任何图像都是可以接受的。

 

最邻近插值(近邻取样法):
  最临近插值的的思想很简单。对于通过反向变换得到的的一个浮点坐标,对其进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目的像素的像素值,也就是说,取浮点坐标最邻近的左上角点(对于DIB是右上角,因为它的扫描行是逆序存储的)对应的像素值。可见,最邻近插值简单且直观,但得到的图像质量不高

 

双线性内插值:
  对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v),其中i、j均为非负整数,u、v为[0,1)区间的浮点数,则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:

    f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)

其中f(i,j)表示源图像(i,j)处的的像素值,以此类推
  这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊

 

  三次卷积法能够克服以上两种算法的不足,计算精度高,但计算亮大,他考虑一个浮点坐标(i+u,j+v)周围的16个邻点,目的像素值f(i+u,j+v)可由如下插值公式得到:

    f(i+u,j+v) = [A] * [B] * [C]

[A]=[ S(u + 1)  S(u + 0)  S(u - 1)  S(u - 2) ]

  ┏ f(i-1, j-1)  f(i-1, j+0)  f(i-1, j+1)  f(i-1, j+2) ┓
[B]=┃ f(i+0, j-1)  f(i+0, j+0)  f(i+0, j+1)  f(i+0, j+2) ┃
  ┃ f(i+1, j-1)  f(i+1, j+0)  f(i+1, j+1)  f(i+1, j+2) ┃
  ┗ f(i+2, j-1)  f(i+2, j+0)  f(i+2, j+1)  f(i+2, j+2) ┛

  ┏ S(v + 1) ┓
[C]=┃ S(v + 0) ┃
  ┃ S(v - 1) ┃
  ┗ S(v - 2) ┛

   ┏ 1-2*Abs(x)^2+Abs(x)^3           , 0<=Abs(x)<1
S(x)={ 4-8*Abs(x)+5*Abs(x)^2-Abs(x)^3  , 1<=Abs(x)<2
   ┗ 0                               , Abs(x)>=2
S(x)是对 Sin(x*Pi)/x 的逼近(Pi是圆周率——π)

 

最邻近插值(近邻取样法)、双线性内插值、三次卷积法 等插值算法对于旋转变换、错切变换、一般线性变换 和 非线性变换 都适用。

 

补充:
一、对于24位DIB,需要分别对RGB分量进行处理;
二、对于f(x,y)中没有对应值的坐标,应该用最邻近坐标的值(比如f(-1,-1)用f(0,0)的值)。

 

原图片:

原图片
放大后的效果

左上角:最邻近插值

右上角:thirdapple (第三只苹果)的处理程序(http://expert.csdn.net/Expert/topic/1151/1151556.xml?temp=.9712488)处理的效果

左下角:双线性内插值

右下角:三次卷积法

(注意看 线、园的边缘)

 


 


 

 


图像几何变换(缩放、旋转)中的常用的插值算法

在图像几何变换的过程中,常用的插值方法有最邻近插值(近邻取样法)、双线性内插值和三次卷积法。最邻近插值: 这是一种最为简单的插值方法,在图像中最小的单位就是单个像素,但是在旋转个缩放的过程中如果出现...
  • chaipp0607
  • chaipp0607
  • 2017年03月24日 22:30
  • 2186

转::图像几何变换(缩放、旋转)中的插值算法

图像几何变换(缩放、旋转)中的插值算法转自:http://www.5inet.net/Develop/DevCraft/058199,TuXiangJiHeBianHuan(SuFang_XuanZh...
  • gengxt2003
  • gengxt2003
  • 2007年03月13日 19:56
  • 2565

matlab 图像几何变换 平移、旋转、缩放

1、缩放 该函数用于对图像做缩放处理。在matlab的命令窗口中输入doc imresize或者help imresize即可获得该函数的帮助信息 调用格式 B = imresize(A, m)...
  • jly58fgjk
  • jly58fgjk
  • 2015年11月21日 10:34
  • 5744

图像几何变换:旋转,缩放,斜切

在CSDN上看到一篇关于图像几何变换的文章,写得很好。收藏!http://blog.csdn.net/xiaowei_cqu/article/details/7616044...
  • u012514681
  • u012514681
  • 2013年11月14日 16:44
  • 642

图像处理学习笔记之图像的几何变换(3)旋转变换

旋转有一个绕着什么转的问题。通常的做法是以图像的中心为圆心旋转,将图像上的所有像素都旋转一个相同的角度。图像的旋转变换是图像的位置变换,但旋转后图像的大小一般会改变。和平移变换一样,既可以把转出显示区...
  • linshanxian
  • linshanxian
  • 2017年04月01日 15:10
  • 1522

图像几何变换插值算法

实践已证明,插值算法对于缩放比例较小的情况是完全可以接受的,令人信服的。一般的,缩小0.5倍以上或放大3.0倍以下,对任何图像都是可以接受的。最邻近插值(近邻取样法):  最临近插值的的思想很简单。对...
  • begtostudy
  • begtostudy
  • 2006年10月10日 19:32
  • 1902

三维空间中的几何变换-平移旋转缩放

深入学习了下图形几何变换,主要是绕任意轴旋转部分(其他的已有一定基础),现记录学习笔记。...
  • swety_gxy
  • swety_gxy
  • 2017年06月12日 13:16
  • 2428

计算机图形学(四)_几何变换_1_基本的二维几何变换(二)_旋转

类似于平移,旋转是一种不变形地移动对象的刚体变换,对象上的所有点旋转相同的角度。线段的旋转可以通过将旋转方程5用于每个线段端点,并重新绘制新端点间的线段而得到。多边形的旋转则是将每个顶点旋转指定的旋转...
  • heyuchang666
  • heyuchang666
  • 2017年03月03日 16:46
  • 2281

图像平移缩放旋转匹配

图像平移缩放旋转匹配 图像相位匹配,或者是傅里叶梅林变换匹配吧,能解决两幅图像之间的平移,缩放,旋转的匹配问题。研究了很久,弄清楚了里头的原理,才发现这些都是别人早就做好的东西。为什么我之前怎么...
  • wkk15903468980
  • wkk15903468980
  • 2017年01月02日 23:43
  • 1802

图像旋转 双线性插值 c++

前面详细介绍了最近邻插值实现图像的旋转,但是我们都知道,最近邻插值对于图像的旋转效果不是特别的好。所以在本文中,我们详细讨论一下双线性插值算法。             首先,详细介绍一下什么事双线性...
  • Chunfengyanyulove
  • Chunfengyanyulove
  • 2015年12月08日 14:38
  • 2414
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图像几何变换(缩放、旋转)中的插值算法
举报原因:
原因补充:

(最多只允许输入30个字)