[Extensive Reading]background modeling:MOG2 MOG2背景建模方法发表于2004年,由Zoran Zivkovic提出,MOG2的改进过程大致是,单高斯背景建模,混合高斯背景建模,MOG到MOG2。
梯度消失与梯度爆炸 简介梯度消失问题和梯度爆炸问题,总的来说可以称为梯度不稳定问题。ReLU激活函数,用Batch Normal,用残差结构解决梯度消失问题正则化来限制梯度爆炸梯度消失梯度消失的原始是反向传播时的链式法则。当模型的层数过多的时候,计算梯度的时候就会出现非常多的乘积项。用下面这个例子来理解:y1=w1x1+b1y_{1} = w_{1}x_{1} + b_{1}y1=w1x1+b1z1=σ(y1)z_{1} = \sigma(y_{1})z1=σ(y1)此时要更新参数b1b
Trajectory Forecasting:TrajNet++ 概述由于自动驾驶和服务机器人等人工智能新兴应用的需求不断增长,拥挤场景中的轨迹预测已成为近年来的一个重要话题。轨迹预测的一项重要挑战是有效地建模社交互动。在过去的几年中,已经提出了几种新颖的方法。然而,这些方法已经在可用数据的不同子集上进行了评估,因此很难客观地比较结果。TrajNet++,是一个大规模的以交互为中心的基于轨迹的基准测试。不仅包含适当的轨迹采样数据,而且提供统一的广泛评估系统来测试收集的方法以进行公平比较。Referenceaicrowd trajnet challengeAwe
transformer transformer最早于2017年google机器翻译团队提出,也就是著名的《Attention Is All You Need》,transformer完全取代了以往的RNN和CNN结构,改为由transformer堆叠的方式构建模型。transformer在NLP领域首先取得了非常惊人的效果,随后DETR首次将transformer引入到了CV的目标检测任务重,随后VIT完全抛弃了CNN,改为完全由transformer实现基础的图像分类任务,之后transformer在CV领域的应用也变得一发
深度学习中的激活函数总结 激活函数饱和问题一个激活函数h(n)h(n)h(n),当n趋近于正无穷,激活函数的导数趋近于0,称之为右饱和;当n趋近于负无穷,激活函数的导数趋近于0,称之为左饱和。当一个函数既满足左饱和又满足右饱和的时候我们称之为饱和。不满足上述两个条件的,称为不饱和激活函数。常见的激活函数,依照饱和或不饱和划分如下:饱和激活函数:sigmoidtanh不饱和激活函数:ReLULeaky ReLUPReLUSwishMish常用激活函数sigmoidg(z)=11+e−zg(z)
[Extensive Reading]目标检测(object detection)系列(十六)YOLOv4:平衡速度与精度 简介YOLOv4是YOLO之父Joseph Redmon宣布退出计算机视觉的研究之后推出的YOLO系列算法,其作者Alexey Bochkovskiy也参与了YOLO之前系列算法,《YOLOV4: Optimal Speed and Accuracy of Object Detection》,其主要贡献在于对近些年CNN领域中最优秀的优化策略,从数据处理、主干网络、网络训练、激活函数、损失函数等各个方面都有着不同程度的优化,组合出一个精度与速度兼备的结构。...
SOT:dataset https://github.com/jiajunhua/foolwood-benchmark_results/blob/master/img/recent_Tracker_development.pngDAVISDAVIS 2016DAVIS 2017ILSVRC VIDILSVRC 2015YouTube-BoundingBoxes
git token使用 2021年8月13日,git不再支持密码方式验证,而是建议使用token。token生成个人设置 > Settings > Personal access tokens > Generate new tokentoken使用clone新的项目时,拼接token和http链接:https://$GH_TOKEN@github.com/owner/repo.gitclone新的项目时使用http链接,密码换成token已经clone的项目,在.git/config中将原来的htt
vscode跳转返回快捷键 windows系统:Alt+← … navigate backAlt+→ … navigate forwardMac系统:Ctrl± … navigate backCtrl+Shift± … navigate forwardOn Ubuntu Linux系统:Ctrl+Alt± … navigate backCtrl+Shift± … navigate forward
python format Python2.6 开始,新增了一种格式化字符串的函数 str.format(),它增强了字符串格式化的功能。基本语法是通过 {} 和 : 来代替以前的 % 。format 函数可以接受不限个参数,位置可以不按顺序。
MOT:MOTchallenge任务评价方法 1,1,912,484,97,109,0,7,12,1,912,484,97,109,0,7,13,1,912,484,97,109,0,7,14,1,912,484,97,109,0,7,15,1,912,484,97,109,0,7,16,1,912,484,97,109,0,7,17,1,912,484,97,109,0,7,1index012345678value1191248497109071含义frame idtra
python pip https://www.runoob.com/w3cnote/python-pip-install-usage.htmlDEPRECATION: Python 2.7 reached the end of its life on January 1st, 2020.
git pull 所有branch和tag并上传 git branch -r | grep -v ‘->’ | while read remote; do git branch --track “KaTeX parse error: Expected '}', got '#' at position 8: {remote#̲origin/}" "remote”; donegit fetch --allgit pull --all
vscode 选择python解释器 当python环境不止一个时,vscode可以选择指定的python解释器,具体为:vscode设置中打开Command Palette键入 Python:Select Interpreter
MOT:A Higher Order Metric for Evaluating Multi-object Tracking 简介:HOTA: A Higher Order Metric for Evaluating Multi-object Tracking是IJCV 2020的paper,在此之前以MOTChallenge为主的多目标跟踪benchmark一直采用以MOTA为排名的评价标准,但是MOTA有些情况下不足以衡量出多目标跟踪的性能,甚至都不如IDF1,所以这篇文章重新考量了多目标跟踪任务,并提出一种Higher Order Tracking Accuracy 的Metric。
Objects Track Benchmarks MOTMOT challengeTAOCaltech Roadside PedestriansBDD100KKITTInuScenesWaymoAOTPANDAArgoVerseSOTMOTSMOT challenge MOTSKITTI MOTSPoseTrackPoseTrackMTMCAICity challengeDuke-MTMCLIMA