我5年前就接触AI,深度学习了。我是从事金融量化开发工作的,一直想利用AI来进行量化预测。
当时模型比较简陋,我做了一些量化方面的AI开发实验,发现效果真不行。还不如直接自己想策略来实现呢!
随着时间一年一年的过去,人工智能AI,逐渐成熟。后来发展出很多非常厉害的算法、模型。
我又重新燃起了希望。又开始好好学习起来。google的tenserflow开源后,我就好好学习了。不过总感觉他的模式非常别扭。
调试起来麻烦。后来听说pytorch有动态图模式。调试方便,代码写的也流程简单易理解。后来我又学习了pytorch。
真是不错。后来百度推出了paddlepaddle,完全开源了。而且百度工程师,全力推广,课程完全免费。
真是比外面培训机构讲的都好。真的是一线架构师亲身传授啊。我就报名了:“百度架构师手把手带你零基础实践深度学习”。
真是从最基础的开始讲,而且讲透了,很多 以前都模模糊糊的知识点,比如:
CNN网络的细节。
RNN、LSTM网络的具体算法流程。
Dropout 具体怎么进行的。
bath normal是怎么在多维数据上计算的。
梯度下降SGD,Adam等优化算法也非常相像的介绍了 他们的具体理解方式。
特别让我吃惊的是,居然连YoloV3的模型的每一步细节,都讲透了。包括数据标注,数据处理,数据多线程处理
数据增强:图像做一些随机的变化,产生相似但又不完全相同的样本。主要作用是扩大训练数据集,抑制过拟合,提升模型的泛化能力,常用的方法:随机改变亮暗、对比度和颜色;随机填充;随机裁剪;随机缩放;随机翻转;随机打乱真实框排顺序。
还跟我们一步一步实践"炼丹”,调参。致使模型最优,达到可以应用于实践的标准。
课程结业:还让我们实践参加了一次“AI识虫”比赛项目。让我们真真体会AI应用于实践的整个过程。以及比赛的竞争压力。
最后感谢 百度飞浆,提供这么好的paddlepaddle框架,以及AI studio开发学习平台