2024牛客暑期多校训练营9 补题 B|C

B-Break Sequence_2024牛客暑期多校训练营9 (nowcoder.com)

感觉和第七场D 好像,题意是分成 k k k 个区间, k k k 是可以任意选择的。每个区间内相同的个数不存在于集合 S 中,问有多少种选择区间的方案。

若没有集合 S 的限制,那么其实就 2 n 2^n 2n 但是我们也可以考虑转移,如何转移得到该状态的。我们会发现前面到现在合法的就都可以转移。

那么如果加了 S S S 集合的限制。我们只需要对每个数吧 S S S 集合对该数的限制标记了。不选择即可。

这个操作可以用线段树来标记。然后记得每次标记一个集合的时候,把上一个和这个数相同的标记的集合的影响给消去。

对于线段树。只需要维护一个被标记的最大值即可。然后向上传递。否则还要维护最大的标记,最小的标记等等,太繁琐了。我最开始就是后面的,然后debug 半天没debug 出来错在哪里,爆了!

#include<bits/stdc++.h>
using namespace std;
#define int long long  
const int N = 3e5+10;
#define lc p<<1
#define rc p<<1|1
const int mod = 998244353;

struct node 
{
	int tag,mx,val; // mi 记录数组下最少没标记为不可选中的次数
}tr[N<<2];
inline int mo(int x)
{
	while(x>=mod)
		x-=mod;
	while(x<0)
		x+=mod;
	return x;
}

void pushdown(int p)
{
	if(tr[p].tag)
	{
		tr[lc].tag += tr[p].tag;
		tr[lc].mx += tr[p].tag;
		tr[rc].tag += tr[p].tag;
		tr[rc].mx += tr[p].tag;
		tr[p].tag = 0;
	}
}
node merge(node ls,node rs)
{	
	ls.tag = rs.tag = 0;
	if(ls.mx == rs.mx) (ls.val += rs.val)%= mod ;
	else if(ls.mx > rs.mx) swap(ls,rs);
	return ls;
}
void update(int p,int l,int r,int s,int t,int num)
{	//assert(tr[p].mx >= tr[p].mi );
	if(l>=s && r <= t )
	{	
		tr[p].mx += num;
		tr[p].tag += num;
		return ;
	}
	pushdown(p);
	int mid = (l+r)>>1;
	if(s <= mid )
		update(lc,l,mid,s,t,num);
	if(t>mid)
		update(rc,mid+1,r,s,t,num);
	tr[p] = merge(tr[lc],tr[rc]);
}
void update1(int p,int l,int r,int pos,int num) // 单点
{	//cout<<tr[p].l<<' '<<tr[p].r<<endl;
	//assert(tr[p].mx >= tr[p].mi );
	if(l == r && l == pos)
	{	
		tr[p].val = num;
		return ;
	}
	pushdown(p);
	
	int mid = (l + r) >>1;
	if(pos <=mid)
		update1(lc,l,mid,pos,num);
	else
		update1(rc,mid+1,r,pos,num);
	tr[p] = merge(tr[lc],tr[rc]);
	
}

vector<int> pre[N+2];
int cnt[N+2];
int dp[N+2];
signed main (){
	std::ios::sync_with_stdio(false);  
	cin.tie(NULL); 
	cout.tie(NULL);
	int n,m;
	cin>>n>>m;
	vector<int> a(n+1);
	for(int i=1;i<=n;i++)
	{	cin>>a[i];
		pre[i].push_back(0);
	}	
	vector<int> s(m+1);
	update1(1,0,n,0,1);
	dp[0] = 1;
	//cout<<query(1,0,n)<<endl;
	
	for(int i=1;i<=m;i++)
		cin>>s[i];
	for(int i=1;i<=n;i++)
	{
		pre[a[i]].push_back(i);
		cnt[a[i]] ++;
		for(int j=1;j<=m;j++)
		{	
			if(cnt[a[i]] == s[j])
			{
				int pos1 = pre[a[i]][cnt[a[i]] - s[j] +1];
				int pos2 = pre[a[i]][cnt[a[i]] - s[j]];
				update(1,0,n,pos2,pos1 -1,1);
				//cout<<pos2+1<<' '<<pos1<<endl;
			}
			else if(cnt[a[i]] > s[j])
			{
				int pos1 = pre[a[i]][cnt[a[i]] - s[j] +1];
				int pos2 = pre[a[i]][cnt[a[i]] - s[j]];
				int pos3 = pre[a[i]][cnt[a[i]] - s[j]-1];
				update(1,0,n,pos3,pos2-1,-1);
				update(1,0,n,pos2,pos1-1,1);
			}
		}
		dp[i] = tr[1].val;
	//	cout<<dp[i]<<endl;
		update1(1,0,n,i,dp[i]);
	}
	// for(int i=1;i<=n;i++)
		// cout<<dp[i]<<' ';
	// cout<<endl;
	cout<<dp[n]<<endl;
// 	
	
	
} 

C-Change Matrix_2024牛客暑期多校训练营9 (nowcoder.com)

题意是说,给定一个 n × n n \times n n×n 的矩形,然后其中 ( i , j ) (i,j) (i,j) 的值为 g c d ( i , j ) gcd(i,j) gcd(i,j) 。每次操作对每行或者每一列的所有值乘以一个值。然后问每次更新后数组所有元素的和为多少?操作是随机的。

看到数据量是 1 0 5 10^5 105 挺大的,肯定不可能暴力。但是对于这种数学问题,挺经常想对于一个行或列去操作,其实是对他的因子操作。以为我们如果打表后会发现,其实只有他因子下gcd 才有数,否则都是 1.

那其实我们可以将矩阵分层,就是每个因子都去建一个矩阵。当然我们不可能每个图都开 n × n n\times n n×n 我们会发现其实对于一个数 i i i ,如果作为因子,他应该是 n i \frac{n}{i} in 个数的因子。所以我们每一个仅需建立 n i \frac{n}{i} in 的矩阵,显然这个的空间复杂度是调和级数的。(这个方法还可以用另一种方法想到,即 g c d ( i , j ) = ∑ x ∣ i , x ∣ j φ ( x ) gcd(i,j) = \sum_{x|i,x|j} \varphi(x) gcd(i,j)=xi,xjφ(x) , φ ( x ) \varphi(x) φ(x) 即为 x x x的欧拉函数,得到,我们去枚举这个 x x x)

对于 g c d ( i , j ) = ∑ x ∣ i , x ∣ j φ ( x ) gcd(i,j) = \sum_{x|i,x|j} \varphi(x) gcd(i,j)=xi,xjφ(x) ,公式的推导详细可能是和卷积有概念。欧拉函数 - OI Wiki (oi-wiki.org)

然后分层后怎么去计算答案呢。其实就是每个分层的 ∑ r i , j × ∑ c i , j × p h i ( i ) \sum r_{i,j}\times \sum c_{i,j} \times phi(i) ri,j×ci,j×phi(i) 即对于 i i i 这个因子,我们看他对答案贡献的个数乘以欧拉函数即可。

那么对于一行和列的修改,我们就可以放到每个因子的 x t \frac{x}{t} tx 行或列去修改即可。

然后由于随机数,所以 d ( n ) d(n) d(n) 的期望是 l o g n logn logn 的。

#include<bits/stdc++.h>
using namespace std;
#define int long long  
const int N = 1e5+10;
const int mod = 1e9+7;
int phi[N],pri[N],isprime[N];
int cnt = 0;
void ini()
{	phi[1] = 1; 
	for(int i=2;i<N;i++)
	{
		if(!isprime[i]) 
		{	
			pri[++cnt] = i;
			phi[i] = i - 1;
		}
		for(int j=1;j<=cnt;j++)
		{
			if(i*pri[j] >= N) break;
			isprime[i*pri[j]] = 1;
			if(i%pri[j] == 0)
			{ // 说明不是互质,
				phi[i*pri[j]] = pri[j] * phi[i];
				break;
			}
			else 
				phi[i*pri[j]] = (pri[j] - 1) * phi[i];
		}
	}
}

int Rsum[N],Csum[N],ans;
vector<int> Rmul[N],Cmul[N],V[N]; // Rmul Cmul 表示在这两个方位上的乘的次数
//V[N] 代表 N 的因子
signed main (){
	std::ios::sync_with_stdio(false);  
	cin.tie(NULL); 
	cout.tie(NULL);
	ini();
	
	int n;
	cin>>n;
	int q;
	cin>>q;
	for(int i=1;i<=n;i++)
	{
		int t = n/i ;
		
		Rsum[i] = t;
		Csum[i] = t;
		
		Rmul[i].resize(t+1,1);
		Cmul[i].resize(t+1,1);
		for(int j=1;j*i<=n;j++)
		{
			V[i*j].push_back(i);
		}
		ans = (ans + Rsum[i]*Csum[i]%mod * phi[i]%mod)%mod;
	}
	//cout<<ans<<endl;
	
	while(q--)
	{
		char op;
		int x,y;
		cin>>op>>x>>y;
		if(op == 'R')
		{
			for(auto i:V[x])
			{
				ans = (ans - Rsum[i]*Csum[i]%mod * phi[i]%mod)%mod;
				Rsum[i] = (Rsum[i] - Rmul[i][x/i])%mod;
				Rmul[i][x/i] = (Rmul[i][x/i]*y)%mod;
				Rsum[i] = (Rsum[i] + Rmul[i][x/i])%mod;
				ans = (ans + Rsum[i]*Csum[i]%mod * phi[i]%mod)%mod;
			}
		}
		else 
		{
			for(auto i:V[x])
			{
				ans = (ans - Rsum[i]*Csum[i]%mod * phi[i]%mod)%mod;
				Csum[i] = (Csum[i] - Cmul[i][x/i])%mod;
				Cmul[i][x/i] = (Cmul[i][x/i]*y)%mod;
				Csum[i] = (Csum[i] + Cmul[i][x/i])%mod;
				ans = (ans + Rsum[i]*Csum[i]%mod * phi[i]%mod)%mod;
			}
		}
		cout<<(ans + mod)%mod<<endl;
				
	}
	
}
 

  • 20
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值