支持向量机入门

支持向量机(Support Vector Machine,简称SVM)是一种经典的监督学习算法,它可以用于分类和回归问题。SVM的特点是具有较高的泛化能力,可以有效地处理高维数据和非线性问题。本文将介绍SVM的基本原理、核函数和模型选择等内容,帮助读者快速了解SVM的入门知识。

一、SVM的基本原理

SVM是一种二分类模型,其基本原理可以用以下图示表示:

![SVM原理图](https://img-blog.csdn.net/20180328112015660?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2FuZGVlcF9fXw==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/50)

如图所示,假设我们要将二维平面上的数据点分为两类:红色圆点和蓝色三角形。我们可以用一条直线来将它们分开,但是有多条直线都可以将它们分开,我们该如何选择最好的分割线呢?

SVM的基本思想是找到一个最优的分割线,使得其到两类数据点的距离最大。其中,到分割线最近的数据点叫做支持向量(Support Vector),如图中的三个点。这条分割线称为最大间隔分割线,因为它能够最大化两类数据点之间的距离。

如何计算最大间隔分割线呢?我们可以将分割线表示为$w*x+b=0$的形式,其中w是向量,x是数据点,b是截距。我们的目标是最大化$\frac{2}{||w||}$,即最小化$||w||$。同时,我们还需要满足以下约束条件:

- 对于分类标签为+1的数据点,应满足$w*x+b\geqslant1$

- 对于分类标签为-1的数据点,应满足$w*x+b\leqslant-1$

以上约束条件可以简化为$y_i(w*x_i+b)\geqslant1$,其中$y_i$是数据点的分类标签。

为了方便计算,我们可以将目标函数改写为以下形式:

$$\begin{aligned} &\min_{w,b}\frac{1}{2}||w||^2\\ &s.t. \ y_i(w*x_i+b)\geqslant1 \end{aligned}$$

这是一个凸优化问题,可以用拉格朗日乘子法求解。具体而言,我们可以定义拉格朗日函数:

$$L(w,b,\alpha)=\frac{1}{2}||w||^2-\sum_{i=1}^{N}\alpha_i[y_i(w*x_i+b)-1]$$

其中,$\alpha_i\geqslant0$是拉格朗日乘子。我们需要求解以下方程组:

$$\begin{aligned} &\frac{\partial L}{\partial w}=w-\sum_{i=1}^{N}\alpha_iy_ix_i=0\\ &\frac{\partial L}{\partial b}=-\sum_{i=1}^{N}\alpha_iy_i=0\\ &y_i(w*x_i+b)-1\geqslant0\\ &\alpha_i[y_i(w*x_i+b)-1]=0 \end{aligned}$$

解得$\alpha_i$的值后,就可以计算出w和b的值了。最终的分类决策函数为:

$$f(x)=sign(\sum_{i=1}^{N}\alpha_iy_i(x_i*x)+b)$$

二、SVM的核函数

SVM的基本原理是将数据映射到高维空间,从而使数据线性可分。但是,将低维数据映射到高维空间可能会导致维度灾难问题(Curse of Dimensionality),即计算复杂度随着维度增加而增加。为了解决这个问题,我们可以使用核函数(Kernel Function)。

核函数是一种将低维数据映射到高维空间的技术,它可以在低维空间中计算高维空间中的内积,从而避免了显式地计算高维空间中的数据。常用的核函数有以下几种:

1. 线性核函数

线性核函数的公式为:

$$K(x_i,x_j)=x_i*x_j$$

这个核函数表示在原始空间中的内积,即将数据点映射到同一维度空间中。它适用于大部分线性问题,但是对于非线性问题效果较差。

2. 多项式核函数

多项式核函数的公式为:

$$K(x_i,x_j)=(x_i*x_j+1)^p$$

其中,p是多项式的次数。多项式核函数把原始空间中的数据映射到高维空间中的多项式空间中,可以处理一些非线性问题。

3. 高斯核函数

高斯核函数的公式为:

$$K(x_i,x_j)=e^{-\gamma||x_i-x_j||^2}$$

其中,$\gamma$是高斯核函数的带宽(Bandwidth)参数。高斯核函数将低维数据映射到无限维的高斯空间中,可以处理复杂的非线性问题。

三、SVM的模型选择

SVM的模型选择主要包括以下几个方面:

1. 核函数选择

核函数的选择很重要,不同的核函数适用于不同的问题。一般来说,如果数据线性可分,就可以使用线性核函数;如果数据线性不可分,就可以使用多项式核函数或高斯核函数。在实际应用中,可以通过交叉验证等方法来确定最优的核函数和参数。

2. 正则化参数选择

SVM中的正则化参数C用于平衡分类间隔和错误分类点的惩罚项。如果C较大,SVM会更加关注分类间隔,可能会产生过拟合;如果C较小,SVM会更加关注错误分类点,可能会产生欠拟合。在实际应用中,可以通过交叉验证等方法来确定最优的正则化参数。

3. 样本权重选择

在实际应用中,有些类别的数据点可能较少,或者某些数据点的重要性不同。为了解决这个问题,可以使用样本权重来平衡不同类别和不同数据点之间的影响。在SVM中,可以通过修改目标函数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值