自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 Datawhale AI夏令营(第三期)

恭喜看完所有笔记(撒花撒花),时间飞逝,七天的学习就要结束啦。整体来说,受益匪浅,还记得第一篇笔记,本以为很难,真的是抱着尝试的态度来完成的,结果不仅提前完成了,而且取得了不错的成绩。因此,凡事都要尝试,会有意想不到的收获。永远——!

2024-08-03 14:56:17 1021

原创 Datawhale AI夏令营(第三期)

大模型微调(Fine-tuning)是一种技术,通过在预训练的大型语言模型上使用特定数据集进行进一步训练,使模型能够更好地适应特定任务或领域。假设有一个超级聪明的学生,他已经学习了大量的课程内容(即大模型的预训练)。但现在需要他在一个特定的科目上表现出色(比如物理),于是给他专门的补习材料(微调过程)。让他可以在这个特定领域里变得更加专业、回答得更加准确。参考微调教程接下来就是环境配置、数据准备等目前还没有调整prompt等上分思路,所以还有很大的上分空间。

2024-08-02 22:45:50 727

原创 Datawhale AI夏令营(第三期)

赛题思路介绍在Task01中我们介绍了机器学习与深度学习两部分的思路,那么如何使用大模型解决这个问题呢?我们baseline是如何做的?代码的核心在哪里?大模型做了什么?让我们一探究竟。大模型介绍目前来看,重点的上分部分部分就是prompt配置部分了,需要读懂大模型的prompt并尝试修改。非计算机专业的同学需要先补充一下python的知识。

2024-07-30 22:31:42 876

原创 Datawhale AI夏令营

Task1(附部分代码解析)从零入门 AI 逻辑推理“AI+逻辑推理”方向包含了赛题分析大模型技术基础方案传统机器学习解题思路(btw,抱着尝试的心态来看task1,以为很难,但是教程可以说是保姆级别的,一步一步的操作下来可以说是很丝滑,生成结果的时候花了较长的时间,得分并不是很高,但整体的感觉还是很棒的)新用户可能需要先开通灵积模型服务,申领大模型API不需要选择GPU和CPU,选择默认的即可下载代码及测试集,导入并填写阿里云申请的API-KEY,一键跑通代码。

2024-07-28 23:37:54 1108

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除