信息安全数学基础中关于近世代数的感悟

联系

近世代数在计算机特别是信息安全淋雨有广泛的应用,是很多重要技术的理论基础和理论工具,比如:纠错码,伪随机序列,古典密码算法,AES密码算法和椭圆曲线密码算法等等。

与我们之前所学过的数学不同,信息安全中的数学讨论的更多的是数学在信息安全中的一个保护应用,而不是一个效率问题。

下面我们看一下信息安全中的几大难题:
一.大整数因式分解问题:
给定两个*素数 p和q,计算其乘积n=p×q是容易的,但从n求p和q是困难的。
二.离散对数问题:
已知有限群G=< g >={gk |k=0,1,2,…}及其生成元g和阶n=|G| 。
(1)给定整数a,计算ga =h 是容易的。
(2)给定元素h,计算整数x,使得gx= h是非常困难的。
三.椭圆曲线离散对数问题:
已知有限域Fp上的椭圆曲线群E(Fp)={(x,y)| 属于 Fp×Fp,y2=x3+ax+b,a,b∈Fp}U{0}及点P=(x,y)的阶为一个大素数。
(1)给定整数a,计算点aP=(xa,ya)=Q是很容易的。
(2)给定点Q,计算整数x,使得xP=Q是非常困难的。

从以上的三个问题我们可以看出,凡是从正向去求解,都是比较容易的,但如果从反向求解,是比较困难的。因此我们可以从这个思路入手,让我们处于正向,而让敌人处于反向,这样敌人难以破译我们的信息,从一定程度上来说会加强我们的信息安全性。

为了更好地了解信息安全中的数学基础,我们首先从近世代数的学习入手。

近世代数

近世代数中主要涉及群,环和域,这三者都与集合有密切联系。

集合:具有共同属性的事物的总体。
集合上的二元运算:
设S为集合,映射n:
η : { S × S − − > S ( x , y ) − − > z \eta: \begin {cases} S×S-->S\\(x,y)-->z \end{cases} η:{S×S>S(x,y)>z
称为集合S上的二元运算。

设三元组(G,.,1)中,G为集合,“."为集合G上的二元运算,1为G中一个元。
若(G,.,1)满足:
(1)G1(乘法结合律):(a* b)* c=a* (b* c)
(2)G2(单位元):a* 1=1* a=a
(3)G3(逆元):对于a属于G,有a’属于G,使得a* a’=1
则称(G,.,1)为群,简称群G,1称为群G的单位元。
若群G还满足G4(交换律):a* b=b* a,则称群G为交换群。
若(G,.,1)仅满足G1,G2,则称其为有单位元的半群。
若(G,.1)满足G1,G2,G4,则称其为有单位元的交换半群。

ex.设(Z,+,0)中Z为整数集,+为整数的加法运算,0为整数零,易验证:a,b,c∈Z
1.(a+b)+c=a+(b+c),故G1成立
2.a+0=0+a=a,故G2成立
3.a+(-a)=(-a)+a=0,故G3成立
4.a+b=b+a,故G4成立
综上所述,(Z,+,0)为交换群。

子群

设(G,. ,1)为群,A为G的子集,若1∈A,且(A, . ,1)构成群,则称A为G的子群,并记为A≤G。

循环群

若群G的每一个元素都能表示成一个元素a的方幂,则G称为由a生成的循环群,记作G=< a >,a称为循环群G的生成元。
根据元素的阶的性质,循环群G=< a >有两种类型:
1.当生成元a是无限阶元素时,则称G为无限阶循环群。
2.若a的阶为n,即an=1,那么这时G=< a >=< 1,a,a2,a3,…,an-1>,则称为由a所生成的n阶循环群。注意:此时1,a,a2,a3,…,an-1两两不同。

设五元组(R,+,.,0,1)中,R为集合,+和.为集合R上的二元运算,0与1为R中元,若(R,+,. ,0,1)满足:
1.R1(加法交换群):(R,+,0)为交换群
2.R2(乘法半群):(R,. ,1)为有单位元的半群
3.R3(乘法对加法的分配):a*(b+c)=a* b+a* c,(b+c)* a=b* a+c* a
则称(R,+,.,0,1)为环,简称为环R。
+与.称为环R的加法与乘法;
1称为环R的单位元,0称为环R的零元;
若a’∈R,满足a+a’=0,则称a’为R的负元,记为-a;
若a’‘∈R,满足a*a’‘=1,则称a’'为R的逆元,积为
1 a \frac{1}{a} a1
(R,+,0)称为环R的加法群,(R,. ,1)称为环R的乘法半群。
若环R满足R4(乘法交换半群):(R, . ,1)为交换半群,则称R为交换环。

整环

零因子:设a,b∈R,且a≠0,b≠0,若a* b=0,则称a 与 b为环R的零因子。
无零因子环:若环R无零因子,则称环R为无零因子环。
整环:可交换的无零因子环为整环。

理想&主理想

理想:若I为环R加法群的子群,且对任意的a∈I和r∈R,都有a* r属于I和r* a∈I,则称I为环R的理想。
主理想:若I为交换环R的理想,I={ra| r∈R},则称I 为环R的主理想,并记为I =(a)。

环上多项式&多项式环

设x为文字,R为交换环,x ∉ \notin /R。定义R上的多项式集
R[x] ={ f(x)= ∑ i = 0 n \sum_{i=0}^n i=0naixi | n ∈ \in Z, ai ∈ \in R} 。
f(x)= ∑ i = 0 n \sum_{i=0}^n i=0naixi 称为交换环R上关于文字x的多项式
aixi 称为f(x)的第i项,ai为f(x)的第i次项系数,a0x0记作a0
当an≠0时,anxn称为f(x)的首项,n称为f(x)的次数,记作 ∂ \partial f(x)=n,特别地,当an=1时,称f(x)为首1多项式。
称0 ∈ \in R 为R[x]中的零多项式,并约定 ∂ \partial (0)= - ∞ \infty
R[x]的+与×
设f(x)= ∑ i = 0 n \sum_{i=0}^n i=0naixi ,g(x)= ∑ j = 0 m \sum_{j=0}^m j=0mbjxj
则f(x)+g(x)= ∑ i = 0 m a x ( m , n ) \sum_{i=0}^{max(m,n)} i=0max(m,n)(ai+bi)xi
f(x)*g(x)= ∑ k = 0 m + n \sum_{k=0}^{m+n} k=0m+n( ∑ i + j = k \sum_{i+j=k} i+j=kaibj)xk
ex. 若f(x)=1+x+2x2,g(x)=2x2+x3,
则f(x)+g(x)=1+x+4x2+x3,
f(x)g(x)=
(1+x+2x2)(2x2+x3)=2x2+x3+2x3+x4+4x4+2x5=2x2+3x3+5x4+2x5
多项式环
设R为交换环,五元组(R[x],+,.,0,1)称为R上的多项式环。

域的定义

设五元组(F,+,.,0,1)中,F为集合,+和.为集合F上的二元运算,0和1为R中元,若(F,+,.,0,1)满足:
1.F1(加法交换群):(F,+,0)为交换群;
2.F2(乘法交换群):(F*,.,1)为交换群,其中,F*=F-{0};
3.F3(乘法对加法的分配律):a(b+c)=ab+ac,a、b、c ∈ \in F。
则称(F,+,.,0,1)为域,简称域F。

Galois域:
设F是一个域,如果域F含有无限多个元素,则称域F为无限域;
若域F含有有限个元素,则称为有限域或者Galois域,并把F中元素的个数称为F的阶,若F中含有q个元素,可简记为GF(q)。

域的基本性质

  • 加法消去律:设a,b,c ∈ \in F,若a+c=b+c, 则一定有a=b;
  • 乘法消去律:设a,b,c ∈ \in F且c≠0,若ac=bc,则一定有a=b;
  • 对于任意的a ∈ \in F,都有-(-a)=a;
  • 对于任意的a ∈ \in F且a$\not=$0,都有(a-1)-1=a;
  • 对于任意的a ∈ \in F,都有a*0=0;
  • 对于任意的a,b ∈ \in F,若有a*b=0,则一定有a=0,或b=0;
  • 对于任意的a,b ∈ \in F,都有-(a+b)=(-a)+(-b);
  • 对于任意的a,b ∈ \in F,都有a*(-b)=(-a)* b=-a* b;
  • 对于任意的a,b ∈ \in F,都有(-a)*(-b)=ab;
  • 对于任意的a,b ∈ \in F且a ≠ 0 \not=0 =0 , b ≠ 0 b\not=0 b=0,都有(ab)-1=a-1b-1;
  • 对于任意的a ∈ \in F且a ≠ 0 \not=0 =0 ,都有(-a)-1=-a-1

公因式&公倍式

带余除法
设f(x),g(x)为F[x]中的多项式,且 g ( x ) ≠ 0 g(x)\not=0 g(x)=0,则存在唯一的两个多项式q(x),r(x),使得f(x)=q(x)g(x)+r(x), ∂ r ( x ) < ∂ g ( x ) \partial r(x)<\partial g(x) r(x)<g(x),则称f(x)为被除式,g(x)为除式,q(x)为商式,r(x)为余式。若r(x)=0,则称g(x)是f(x)的因式,或称f(x)是g(x)的倍式,还称f(x)能被g(x)整除,记作g(x)|f(x)。

公因式
设f(x),g(x),q(x)是F[x]中的多项式,且 q ( x ) ≠ 0 q(x)\not=0 q(x)=0,如果q(x)既是f(x)的因式,又是g(x)的因式,则称q(x)为f(x)和g(x)的公因式。
如果f(x),g(x)不全为零,则f(x)和g(x)的公因式中次数最高的首1多项式称为f(x),g(x)的最高公因式,记为(f(x),g(x))。
如果(f(x),g(x))=1,则称f(x)与g(x)互素。

公倍式:
设f(x),g(x),q(x)是F[x]中的多项式,且 q ( x ) ≠ 0 q(x)\not=0 q(x)=0,如果q(x)既是f(x)的倍式,又是g(x)的倍式,则称q(x)为f(x)和g(x)的公倍式。
如果f(x),g(x)不全为零,则f(x)和g(x)的公倍式中次数最低的首1多项式称为f(x),g(x)的最低公倍式,记为[f(x),g(x)]。

既约多项式

设f(x)是F[x]中的一个多项式,且 ∂ f ( x ) ≥ 1 \partial f(x)\geq1 f(x)1,若f(x)的因式只有常数项c
( c ≠ 0 c\not=0 c=0)或cf(x),则称f(x)为域F上的不可约多项式或既约多项式,否则,称f(x)为域F上的可约多项式。

多项式的可约性与所在的域密切相关。
ex.多项式x2-2在有理数域Q中是既约的,但在实数域R中是可约的,
x2-2= ( x + 2 ) ( x − 2 ) (x+\sqrt{2})(x-\sqrt{2}) (x+2 )(x2 )
多项式x2+1在有理数域Q和实数域R中是既约的,但在复数域C中是可约的,x2+1=(x+i)(x-i)。

域F上次数 ≥ 1 \geq1 1的多项式都可以分解成一些域F上的既约多项式的乘积,若不计这些既约多项式在乘积中出现的先后顺序,则这些分解是唯一的。
设f(x)是F[x]中的一个多项式,若当x=a时,f(a)=0,则称a为f(x)的一个
因为一次多项式一定是既约多项式,故域F上的n次多项式最多只能分解为n个一次多项式的乘积,因此,域F上的n次多项式在域F上最多有n个根。

多项式的同余

如果域F上的多项式f(x)和g(x)被m(x)相除有相同的余数,即:f(x)=q1(x)m(x)+r(x),g(x)=q2(x)m(x)+r(x), ∂ r ( x ) < ∂ m ( x ) \partial r(x)< \partial m(x) r(x)<m(x),或者r(x)=0,则称f(x)和g(x)关于模m(x)同余,简记为f(x)=g(x) mod m(x)。
f(x)=g(x) mod m(x) 当且仅当 m(x)|(f(x)-g(x))。

同余运算的基本性质:
设f(x),g(x),q(x),r(x),m(x)是域F上的多项式,则

  • 自反性:f(x)=f(x) mod m(x)
  • 对称性:f(x)=g(x) mod m(x)当且仅当g(x)=f(x) mod m(x)
  • 传递性:f(x)=g(x) mod m(x)且g(x)=q(x) mod m(x),
    则f(x)=q(x) mod m(x)
  • 若f(x)=g(x) mod m(x)且q(x)=r(x) mod m(x), 则 f ( x ) ± q ( x ) = g ( x ) ± r ( x ) f(x)\pm q(x)=g(x)\pm r(x) f(x)±q(x)=g(x)±r(x) mod m(x)
  • 若f(x)=g(x) mod m(x)且q(x)=r(x) mod m(x),
    则f(x)q(x)=g(x)r(x) mod m(x)
  • 若q(x)f(x)=q(x)g(x) mod m(x)且(q(x),m(x))=1,
    则f(x)=g(x) mod m(x)

剩余类

用域F上的一个n次多项式去除F[x]中的所有多项式,所得的余式的次数一定小于n。设余式的一般形式如下:an-1xn-1+an-2xn-2+……+a1x+a0, ai ∈ F \in F F.
设域F中含有q个元素,则一共有qn个不同的余式。把具有相同余式的多项式规为一类,称为一个剩余类,这样F[x]中所有多项式便划分为qn个剩余类。

ex.设f(x)=x3+1为GF(2)上的多项式,用它去除GF(2)上的所有多项式,可把所有GF(2)上的多项式分为23=8个剩余类(a2x2+a1x+a0):{0},{1},{x},{x+1},{x2},{x2+1},{x2+x},{x2+x+1}。

子域和扩域

设p(x)是域F上的一个n次既约多项式,记F[x]p(x)为模p(x)的全体余式集合,即F[x]p(x)={an-1xn-1+an-2xn-2+……+a1x+a0,ai ∈ F \in F F},并且对于任意的f(x)和g(x) ∈ \in F[x]p(x),定义如下的按模加和按模乘运算:
f(x)+g(x)=)(f(x)+g(x))p(x), f(x)g(x)=(f(x)g(x))p(x),则F[x]p(x)关于所定义的加法和乘法运算构成域。如果F中包含q个元素,则F[x]p(x)是一个包含qn个元素的有限域GF(qn),而且F是这个GF(qn)的子域。
F是F[x]p(x)的子域,F[x]p(x)是F的扩域。

设f(x)为GF(2)上的n-1次多项式,A为GF(2)上的n位数据组,
f(x)=an-1xn-1+an-2xn-2+……+a1x+a0,ai ∈ \in GF(2),
A=(an-1,an-2,……,a1,a0)。

ex.由GF(2)上的四次既约多项式p(x)=x4+x+1扩成的GF(2^4)如下表所示:

四位向量形式多项式形式
00000
00011
0010x
0011x+1
0100x2
0101x2+1
0110x2+x
0111x2+x+1
1000x3
1001x3+1
1010x3+x
1100x3+x2
1011x3+x+1
1101x3+x2+1
1110x3+x2+x
1111x3+x2+x+1

至此,近世代数告一段落,近世代数是学习信息安全数学基础的基础,我们要熟练掌握概念并学会将其运用于信息的安全领域。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值