/对于q个查询将b[x]=y的操作,我们可以看做先将b[x]上的数字暂时删除,然后再将y放到这个位置上
这样我们就拆解成两个操作:删除和插入,我们可以发现这两次操作的影响程度有限,只局限与改变附近的数字的状态,我们可以维护一个非法状态的贡献来做
容易想到可以用set维护数字在数组b中出现的位置,我们只需要关注最早出现的位置也就是begin就可以了。
虽然思路容易想出来,但是代码实现起来还是比较麻烦,可能会堆出很大的码量。代码这里参考了别人一段简洁的题解C2. Adjust The Presentation (Hard Version) - onlyblues - 博客园,详细细节解释见注释
#include <bits/stdc++.h>
using namespace std;
#define int long long
int n, m, q;
const int N = 1e6 + 10;
int a[N], p[N], b[N], f[N];
// f[i]表示数组a中的第i个数字a[i]在数组b出现的最早位置
// p[i]表示数字i在数组a中的位置
set<int> s[N];
// s[i]存的是数字i在b数组中的所有位置
// 形式上,f[i]可以用*s[i].begin()表示
int cnt;
void upd(int x, int op) // x是b数组中需要操作的数字的位置
{
int u = b[x]; // 明确需要修改的数字u
// 我们要对数字u进行操作,操作前先减去贡献,等到操作后再把贡献加回来
if (p[u] - 1 >= 1) // 数字u在数组a中的位置p[u]的前一个数字是否存在
cnt -= f[p[u] - 1] > f[p[u]]; // 存在先减去贡献
if (p[u] + 1 <= n) // 数字u在数组a中的位置p[u]的后一个数字是否存在
cnt -= f[p[u]] > f[p[u] + 1]; // 存在先减去贡献
// op==1表示插入操作,否则是删除
if (op)
s[u].insert(x);
else
s[u].erase(x);
f[p[u]] = *s[u].begin(); //**更新数字u在数组a中的位置p[u](也就是数组a中的第p[u]个数字)在数组b中出现的最早位置 f[p[u]]= *s[u].begin()
// 数字u的状态已经更新,将新状态的贡献加回来
if (p[u] - 1 >= 1)
cnt += f[p[u] - 1] > f[p[u]];
if (p[u] + 1 <= n)
cnt += f[p[u]] > f[p[u] + 1];
}
void solve()
{
cin >> n >> m >> q;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
p[a[i]] = i;
}
for (int i = 1; i <= n; i++)
{
s[i].clear();
s[i].insert(m + 1);
}
for (int i = 1; i <= m; i++)
{
cin >> b[i];
s[b[i]].insert(i);
}
for (int i = 1; i <= n; i++)
{
f[i] = *s[a[i]].begin();
}
cnt = 0;
for (int i = 1; i < n; i++)
{
cnt += f[i] > f[i + 1];
}
cout << (cnt ? "TIDAK" : "YA") << endl;
while (q--)
{
int x, y;
cin >> x >> y;
upd(x, 0);
b[x] = y;
upd(x, 1);
cout << (cnt ? "TIDAK" : "YA") << endl;
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
solve();
}