不黑学孙溟㠭匪石社寒山寺游记

文章描绘了作者受友人之邀游览寒山寺的经历,通过对寒山与拾得的对话以及寒山大士诗词的引用,传达出世间无常和修行的重要性。在春日的新绿中,他们在护城河边发现作画颜料,此行收获满满,深化了对生活与文化的感悟。
摘要由CSDN通过智能技术生成

      昔日寒山问拾得曰:世间谤我、欺我、辱我、笑我、轻我、贱我、恶我、骗我、如何处治乎?拾得云:只是忍他、让他、由他、避他、耐他、敬他、不要理他、再待几年你且看他。

       经典对话显修行。是否文殊、普贤再来都不重要。因缘使然,朋友之邀,不黑学社代表往姑苏一游。访道参禅看美景,切磋玉雕逛苏大。姑苏城外,寒山寺已喧闹;枫桥依旧夜泊,历数世事苍苍。寒山寺在法,寒山大士之诗至今如警钟在侧,惊醒世间梦中人。

fc08eab7ac104d58a8df0b6c3d8f4219.png

寒山寺山门

 

688d3a2b24094e518910f6b7ce918fb2.png 

 寒山寺外墙诗句

 

四时无止息,年去又年来。

万物有代谢,九天无朽摧。

东明又西暗,花落复花开。

唯有黄泉客,冥冥去不回。

 

 

闻道愁难遣,斯言谓不真。

昨朝曾趁却,今日又缠身。

月尽愁难尽,年新愁更新。

谁知席帽下,元是昔愁人。

 

 

人问寒山道,寒山路不通。

夏天冰未释,日出雾朦胧。

似我何由届,与君心不同。

君心若似我,还得到其中。

      诸多诗词,有似白话,更多表达劝导诸君世间无常,宜急早修行的心愿。其心境如寒冰,远离凡俗诸欲,超然洒脱。身虽贫贱,内实宝藏,诗词流芳,无量功德。

       二人踏着祖师的足迹,挪步到护城河边,巍巍杨柳,已吐新芽。在此宝地,忽寻得作画的上好矿物质颜料。此行已足,不复他求。

e3e2f73fdb5a4cf4b6e7c92578818f3b.png

苏州城内景色 

e61a763d7dc441a584990d8aeae12a4f.png 

 寒山寺附近柳树

b4da9c5db14a48c1b77481499465860d.png

494e98e9d5d74930a31ff83d5f8ca93b.png 

文/九章 

 

好的,这个问题我可以回答。首先需要安装一些必要的库,比如requests、beautifulsoup4等。然后,我们可以通过以下步骤来实现: 1.构建URL 小红书上的话题URL格式为:https://www.xiaohongshu.com/discovery/item/话题ID。其中,“话题ID”可以在话题页面的URL中找到,比如灵隐寺的话题页面为:https://www.xiaohongshu.com/discovery/item/5c8d3e0b00000000010041d9,可以从中获取话题ID为“5c8d3e0b00000000010041d9”。 因此,我们可以先将话题ID存储在一个列表中,然后通过列表中的话题ID来构建URL。 2.发送请求并解析HTML页面 通过requests库发送请求,并使用beautifulsoup4库解析HTML页面,获取页面中的关联词信息。 3.提取关联词 通过beautifulsoup4库提取页面中的关联词信息,将其存储在一个列表中。 4.输出结果 将输出结果保存在一个文件中。 以下是实现代码,供你参考: ```python import requests from bs4 import BeautifulSoup # 话题ID列表 topic_ids = ['5c8d3e0b00000000010041d9', '5c8d3e0b00000000010041d4', '5c8d3e0b00000000010041d6', '5c8d3e0b00000000010041d3', '5c8d3e0b00000000010041d7', '5c8d3e0b00000000010041d8', '5c8d3e0b00000000010041d5', '5c8d3e0b00000000010041da', '5c8d3e0b00000000010041db', '5c8d3e0b00000000010041dc'] # 构建URL urls = [] for topic_id in topic_ids: url = f'https://www.xiaohongshu.com/discovery/item/{topic_id}' urls.append(url) # 发送请求并解析HTML页面,提取关联词 related_words = [] for url in urls: r = requests.get(url) soup = BeautifulSoup(r.content, 'html.parser') tags = soup.find_all('div', {'class': 'tag-item'}) for tag in tags: related_words.append(tag.text) # 输出结果 with open('related_words.txt', 'w', encoding='utf-8') as f: for word in related_words: f.write(word + '\n') ``` 注意:上述代码中的URL和话题ID可能已经失效,需要根据实际情况修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值