- 博客(5)
- 收藏
- 关注
原创 maniptrans论文学习
人类的双手在交互中起着核心作用,这促使人们对灵巧机器人操作展开了越来越多的研究。数据驱动的具身人工智能算法需要精确、大规模、类人的操作序列,而通过传统的强化学习或现实世界中的远程操作来获取这些序列面临着挑战。为解决这一问题,我们提出了MANIPTRANS,这是一种新颖的两阶段方法,用于在仿真环境中将人类的双手机能高效地迁移到灵巧机器人手上。MANIPTRANS首先预训练一个通用轨迹模仿器来模拟手部动作,然后在交互约束下微调特定的残差模块,从而实现复杂双手任务的高效学习和准确执行。
2026-01-12 20:11:11
773
原创 Maniptrans论文复现
再从anno_preview中下载scene_03__A004%2B%2Bseq__20aed35da30d4b869590__2023-04-22-18-45-27.pkl(这是项目里默认用的盖酒精灯盖子任务,不喜欢也可以换别的。不想找可以点下面链接),放在anno_preview中,训练时程序会在anno_preview里找数据。根据需要下载imitator_ckp中的文件,放在assets中。在data文件夹中创建OakInk-v2文件夹,再在OakInk-v2下创建anno_preview文件夹。
2025-12-09 14:54:12
893
原创 Diffusion Policy论文学习
已有研究尝试通过探索不同的动作表示方式(如图 1a)来应对这些挑战,例如:使用高斯混合模型(Mandlekar et al., 2021)、将动作量化后用分类方式建模(Shafiullah et al., 2022),或者切换策略的表示方式(如图 1b),从显式分布转为隐式分布,以更好地捕捉多模态结构(Florence et al., 2021;Diffusion Policy 则通过直接学习能量函数的梯度,避免了对归一化常数的估计需求,因此在保持分布表达能力的同时,大幅提升训练稳定性。
2025-11-26 20:10:15
570
原创 Pi0论文学习
机器人学习在充分释放灵活、通用且具备高灵巧性机器人系统的潜力方面具有巨大前景,同时也有助于探索人工智能中一些最核心的问题。然而,要使机器人学习达到真实世界应用所需的通用性,仍面临数据规模、泛化能力和鲁棒性等方面的重大挑战。在本文中,我们探讨了通用机器人策略(即机器人基础模型)如何应对这些挑战,以及如何构建能够处理复杂、高灵巧任务的高效通用策略。我们提出了一种新的flow matching(流匹配)架构,建立在**预训练的视觉-语言模型(VLM)**之上,用以继承互联网级别的语义知识。
2025-11-18 22:53:22
1003
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅